

For every 100 miles of stream – an average of 7 dams and 106 roads interrupt migratory fish passage in New England

-The Nature Conservancy, 2012

DOT-DEEP FISHERIES COORDINATION

- 3,450 DOT inspected Bridges/Culverts over water
 - Numerous smaller/uninspected
- DEEP Fisheries Division reviews all DOT projects with in-water work
 - Identify fisheries resources and barriers to fish movement (perched culverts, shallow flows, velocity barriers, lack of diverse habitat, etc.)
 - Provide recommendations for preferred rehab option and habitat enhancement, passage restoration, or off-site mitigation options
- DEEP has conducted ~330 Reviews since 2011 (State and Municipal projects)

DOT-DEEP FISHERIES COORDINATION

- DOT & DEEP work collaboratively on the design of passage restoration projects
 - Work directly with Designers on baffle/weir designs
 - Evaluate flows/velocities for suitability of passage during spawning
- DEEP Fisheries Staff works in the field with DOT Environmental staff during construction
 - Review and approve streambed materials
 - Provide oversight for the installation of enhancements
 - ~\$2.2 M in contract items for fisheries enhancements (10-15yrs)

CASE STUDY:

FISH PASSAGE RESTORATION - MARLBOROUGH

Twin - 6 ft. CMPs: 262 FT. at 4.5% slope under Route 2

- Outlet: Barrier due to drop/perch of $1\frac{1}{2}$ ft.
- Inlet: Prone to clogging with woody debris.
- In-culvert issues: Seasonal excessive water velocities, shallow water, lack of roughness & velocity refugia.

STREAM HABITAT FEATURES

- Steep gradient > 7%
- Large boulder step-pool habitats

Lower gradient 2%

Small boulder & cobble substrate: riffle/run/ pool habitats

DESIGN FEATURE: OUTLET CAST-IN-PLACE POOL/WEIR FISHWAY

- 29 feet long
- 6 pools/weirs at 4" drop/pool
- 3" backwater into culvert
- Weirs notched (2' x 1') with weir board slots
- Substrate installed on fishway floor
- Diversion wall to guide fish into fishway
- Holding pool below fishway

INLET TRASH RACK & DIVERSION WALL

Hybrid Deflect and Collect Trash Rack to Minimize Debris & Maintenance in Baffled Culvert

Diversion wall: average daily flows directed into baffled culvert. Flood flows conveyed into both culverts.

WHAT MAKES THIS PROJECT UNIQUE?

- MOA developed between agencies to support a 3 year fish passage study (2015-18) during fall spawning period.
- DOT purchased passive integrated transponder (PIT)
 equipment & provided to DEEP Fisheries Division (\$27k)
- Goal: Utilize study findings to assess fish passage performance & develop passage design features for future sliplining projects

PIT MONITORING: TAGGING PROTOCOL

- Tags: 12 mm x 2 mm
- Inserted into body cavity
- No anesthesia
- Tagged 155 fish (4-11 in. TL)

FOUR ANTENNA LOCATIONS/ OREGON RFID SYSTEM

Culvert Inlet

Fishway

entrance

Upstream channel

The receiver energizes a looped antenna creating an electromagnetic field.

Culvert Outlet

When a PIT tagged fish is detected by an antenna, the date, time, fish ID number and antenna number is recorded by the reader.

MOVEMENT BETWEEN TRIBUTARY & MAINSTREAM LYMAN BROOK

 Conduct monthly fish location searches with mobile antenna system to track movements between mainstem and tributary/culvert

RESULTS

- Fish Passage is Successful!
- 0.96 mi of additional habitat opened up because of the passage
 - Native Brook Trout populations upstream and downstream of the culvert are no longer isolated.

	Upstream Movement	Downstream Movement
2016	9 (22 events)	7 (18 events)
2017	3 (6 events)	3 (6 events)

- Fish that were tagged in tributary below culverts most likely to move upstream.
 - Generally little movement between mainstem and tributary, however there are exceptions of a few wide ranging fish.
- DEEP now monitoring depth/velocity readings at culvert baffle and entrance to characterize hydraulic conditions during upstream movements.

RESULTS

NEST DISCOVERED OCTOBER 20, 2017 AT FISHWAY POOL #6 FISH #302 & 486 (WATER TEMP. 52 F)

Conclusions/Future Efforts

PIT tag evaluation is helping to guide the design of fish passage features at future sliplining projects. While we are still learning, some take-aways are:

- Corner baffle design for round culverts has successfully passed Brook Trout.
- Install rebar trashracks Culverts (<6 ft. dia.) are too small maintain
- Upstream Movement related to increased streamflow.
- Increased movement activity in early-mid October when trout searching for spawning areas.
- DOT State and Consultant Designers continue to collaborate with Fisheries to address fish passage at State bridge and culvert projects.

