Appendix A – Forms

- Data Collection and Field Review (pages 9.A-1 to 9.A-11)
- Hydraulic Data (pages 9.A-13 to 9.A-16)

DATA COLLECTION AND FIELD REVIEW

I. GENERAL PROJECT DATA Bridge No.: Town: _____ County: Feature carried: Feature crossed: Quadrangle: DEP watershed basin no.: Functional class: rural principal arterial-interstate __ urban principal arterial-interstate rural principal arterial-other expwy. urban principal arterial-other expwy. rural principal arterial-other urban principal arterial-other rural minor arterial urban minor arterial rural major collector urban collector rural minor collector urban local rural local Year of reconstruction: Year built: Overall NBIS structure rating: NBIS Item 113: USGS total scour index: Sufficiency rating: Plans available? yes l no II. SUPERSTRUCTURE INFORMATION Bridge width: _____ m (ft) Bridge length: _____ m (ft) Number of spans: Bridge skew: _____ (degrees) Bearing connection type: positive connection no positive connection III. HYDROLOGIC AND HYDRAULIC INFORMATION Watershed area: _____ km² (sq. mi.)

yes

hydraulic report

SCEL analysis

Other:

Is it tidally influenced?

FEMA F.I.S.

What information is available?

floodway analysis report

no

scour report

comparative report

9.A-2 Bridges

Source	2 Yr.	10 Yr.	50 Yr.	100 Yr.	500 Yr.
	Event	Event	Event	Event	Event
	Source	Source 2 Yr. Event			

Elevations m (ft.)

Water Surface at Approach Cross Section

Streambed	Low	Roadway	2 Yr.	10 Yr.	50 Yr.	100 Yr.	500 Yr.		
	Chord	_	Event	Event	Event	Event	Event		
Pressure flow	at design sto	orm?		undercleara	nce m	(ft.)			
Comments:									

IV. SITE DATA

At Structure

A.	Existing description	s) – Pro	ovide	sketch	of	culvert/stru	icture	with	dimensions	and	brief

Comments: Include structure or culvert type and condition. Note particularly any scour adjacent to abutments or at culvert outlet and the presence of debris or sediment. Also note the location of any utilities in the area of the crossing.

Bridge	9.A-3
B.	High water marks – Describe the nature and location of any apparent high water marks and relate to a date of occurrence, if possible.
C.	Maximum allowable headwater – Describe the nature of the apparent controlling feature and note its location.
D.	Fish passage requirements – Comment on the apparent need for fish passage or impediments to same; such as dams or restrictive crossings in the area.
	ERIPHERAL SITE DATA Hydraulic control – Note location and description.
	Upstream and downstream structures – Provide sketches and brief descriptions of existing bridges/culverts. Include dimensions.

9.A-4 Bridges Comments: C. Watershed area – Check watershed boundaries for accuracy. Note current land uses within watershed. D. Flow control structures within watershed – Note the location and type of all significant flow control structures (dams, etc.) within the watershed. Provide sketches with dimensions as required.

E. Site photographs – Attach to report. Include an index and sketch of photograph locations.

VI. STREAM CHANNEL AND RELATED ASPECTS

A. Stream characterization

Twenty Groupings of Stream Characteristics (check box)

Identifier	Drainage Area	Streambed Slope	Streambed Soils	Land Use
A	Large	Low	SD	S/F
В	Large	Low	SD	Urban
C	Large	Moderate	SD	Forested
D	Medium	Moderate	SD	Urban
Е	Medium	Moderate	SD	S/F
F	Medium	Moderate	CLAY	S/F
G	Medium	Moderate	TILL	S/F
Н	Medium	Moderate	SD	Forested
I	Medium	Moderate	TILL	Forested
J	Small	Low	SD	Urban
K	Small	Moderate	TILL	Urban
L	Small	Low	SD	S/F
M	Small	Moderate	SD	S/F
N	Small	Moderate	SD	Forested
0	Small	Low	CLAY	S/F
P	Small	Steep	TILL	S/F
Q	Small	Moderate	TILL	S/F
R	Small	Low	TILL	S/F
S	Small	Moderate	TILL	Forested
T	Small	Steep	TILL	Forested

	Drainage area	Small Medium Large	\leq 64.75km ² (25 mi ²) > 64.75km ² (25 mi ²) and > 259 km ² (100 mi ²)	$ad \le 259 \text{ km}^2 (100 \text{ mi}^2)$		
	Streambed slope	Low Moderate Steep	≤ 4.76 m/km (25 ft/mi) > 4.76 m/km (25 ft/mi) > 19.05 m/km (100 ft/m	and \leq 19.05 m/km (100 ft.mi)		
Streambed soils SD = Stratified Drift						
	Land Use	S/F = Subu	rban or Farming			
B.	Channel stability					
	Previous NBIS Item 61 rating:					
	Lateral stability:	stable	•	unstable		
	Bank erosion: none light fluvial erosion heavy fluvial erosion mass wasting					

9.A-6 Bridges

Streambed:	∐ stable		aggrad	dating	∐ deş	grading
Armoring pot	ential:	none	low	☐ mo	oderate	high
Geo	omorphic factor	rs that affect	t stream stab	oility (circle f	actors that	apply)
STREAM SIZE	Small (< 30 m w	ide)	(:	Medium 30-150 m)		Wide (> 150 m)
FLOW HABIT	Ephemeral	(Intermitter	nt)	Perennial but flashy	1	Perennial
BED MATERIAL	Silt-clay	Silt	Sand	Gravel	Cobble	or boulder
VALLEY SETTING	No valley, alluvi	al fan	Low relief valley (< 30 m deep)	Moderate re		High relief > 300 m)
FLOOD PLAINS	Little or r	ione I width)	Narrow (2-10 channel width) (>	Wide 10X channel width)
NATURAL LEVEES	Little or No.	ne :	Mainly on Concave	Well Deve	sloped on Both Ba	nks
APPARENT INCISION		Not Incised		Probably Ir	icised	
CHANNEL BOUNDARIES	Alluvi	al	Semi-alluvia		Non-alluvial	
TREE COVER ON BANKS	<50 percent of bankli	ne	50-90 pe	rcent		>90 percent
SINUOSITY	Straight Sinuosity I-1.05)		uous +1.25)	Meandering (1.25-2.0)	Highly meand (>2)	R lering
BRAIDED STREAMS				<u> </u>	- 20 E	∑

Source: Adapted From Brice and Blodgett, 1978

Narrow point bars

Not braided (<5 percent)

Not anabranched (<5 percent)

Equiwidth

(See also FHWA HEC-20, "Stream Stability at Highway Structures" for discussion of the above factors)

Locally braided (5-35 percent)

Locally anabranched (5-35 percent)

Wider at bends

نفع 🚅 🖈

Wide point bars

ANABRANCHED STREAMS

VARIABILITY OF WIDTH AND DEVELOPMENT OF BARS Generally braided (>35 percent)

Random variation

Generally anabranched (>35 percent)

Irregular point and lateral bars

	Secondary bed material: sand gravel boulders manmade silt/clay cobble bedrock					
	Bank protection Type					
	Condition other Condition n/a good weathered slumped fair					
	Comment on the need (if any) for training walls, cutoff walls or special slope or channel protection.					
C.	Channel and overbank roughness coefficients					
	Basic channel description:					
	Surface irregularity of channel: smooth – best obtainable section for materials involved minor – slightly eroded or scoured side slopes moderate – moderately sloughed or eroded side slopes. severe – badly sloughed banks of natural channels or badly eroded sides of man-made channels - jagged and irregular sides or bottom sections of channels in rock.					
	Variations in shape and size of cross sections changes in size or shape occurring gradually large and small sections alternating occasionally or shape changes causing occasional shifting of main flow from side to side. large and small sections alternating frequently or shape changes causing frequent shifting of main flow from side to side.					
	Channel obstructions – (Judge the relative effect of obstructions – consider the degree to which the obstructions reduce the average cross sectional area, character of obstructions, and location and spacing of obstructions).					
	NOTE: Smooth or rounded objects create less turbulence than sharp, angular objects.					
	The effect of obstructions is: negligible minor appreciable severe					

9.A-8 Bridges

Degree of vegetation - (Note a	amount and	d character of foliage).
times the height of vegetation flow is 3 to 4 times the height MEDIUM - Turf grasses vegetation. Stemmy grasses flow 2 to 3 times the height channel side slopes with no stemmer HIGH - Turf grasses with the flow. Willow of Cottonwood growths about 1 year old with the stemmer HIGH - Turf grasses with the flow of the stemmer HIGH - Turf grasses with the stemmer	of flexible n. Supple t of the ver s where the , weeds or t of veget significant where aver od trees 8 t	turf grasses where a seedling tree switch getation. e average depth of flottree seedlings, (modation. Bushy growt vegetation along charage height is about o 10 years old with	es where the average depth of the solution were the average depth of the solution with the solution wi
height of vegetation. Bushy	y growths	about 1 year old in	f flow is less than one half the tergrown with weeds. Dense with weeds and brush (thick
Additional comments:			
VII. <u>HYDRAULIC VULNERABILIT</u>	<u>Y</u>		
Previous Item 71 rating:	_		
Is there confluence present?	yes		no
Angle of attack (flood flow):	yes		no
Bends in channel:		ream of bridge ght channel reach	downstream of bridge at bridge
Velocity order of magnitude:	_ m/s (ft/s)		
Trapping potential:	low	medium	high
Debris potential:	low	moderate	high
11 5	one n bridge	left approach relief bridge	right approach cannot be determined

Primary bed material: sand gravel boulders manmade cobble silt/clay bedrock Comments: VIII.VISUAL SCOUR EVIDENCE USGS observed scour index: _____ History of scour problem: no Note: Comment should address any evidence of scour at ALL substructure units. CONTRACTION SCOUR SUSCEPTIBILITY Channel width upstream: _____ m (ft.) Channel width under bridge: m (ft.) Channel width ratio (channel width upstream / channel width under the bridge: _____ Overbank flow: yes l no Percent of flow in main channel of the approach section: >90% 75%-90% 50%-75% 25%-50% <25% Average bed material size (D_{50}) : @ approach section _____ mm (in) ___ sample taken for sieve analysis @ bridge _____ mm (in) ___ sample taken for sieve analysis Contraction scour susceptibility rating: medium high Comments:

Bridges

9.A-9

9.A-10 Bridges

ABUTMENT SUSCEPTIBILITY

Which abutment is worst?:	left		
Observed scour depth:	m (ft.) Remaining e	embedment in river b	ed: m (ft)
Abutment shape:	vertical with wi	ngwalls	rough
Abutment location:	in channel	at bank	set back
Abutment foundation:	unknown friction piles	spread footing EB piles	pile bent set in rock
Pile type:	concrete	timber	□ N/A
Pile length:	m (feet)		
Abutment material: timber	concrete	metal	stone
Angle of inclination:	(degrees)		
· · · · · · · · · · · · · · · · · · ·	and grav	=	
Are borings available?	yes	no	
Abutment protection			
Type: modified concrete Permanent or Temporary: Condition: good fair	intermediate other n/a weathered poor	standard absent permanent slumped N/A	slope paving none temporary missing
Abutment exposure due to scour:	posure fo	oting exposed iled	piles exposed
Abutment susceptibility rating	low	medium	high
Comments:			

PIER SUSCEPTIBILITY

Worst pier numb Observed scour	oer: depth:	m (ft.) Remain	ing embedment in riv	er bed: m (ft)
Angle of attack f	flood flow:	(degree	s)	
Pier foundation: BB piles	unkno set in		spread footing friction piles	pile bent N/A
Pile type:	metal	concrete	timber	□ N/A
Pile length:				
Pier material:	stone	wood	metal	□ N/A
Pier shape: solid pier wit column with	th sharp nose 🔲	solid pier with s column with squ cylinders/group	uare nose colu	d pier with round nose mn with round nose
Pier width:]	Pier dimensions:	
Cap/Footing dim	nensions:			
Pier exposure du	e to scour:	none piles expos	no exposure ed undermining	footing exposed settlement
Pier protection				
Type: [Permanent or Te Condition: [modified concrete mporary: good fair	intermediat other n/a weathered poor	te standard absent permanent slumped N/A	slope paving none temporary missing
Primary bed mat		nd	gravel bould bedre	
Are borings avai	lable?	yes	n	o
Pier susceptibilit	y rating	low	medium h	igh
Comments:				

9.A-12 Bridges

BLANK PAGE

HYDRAULIC DATA

1)	Lo	<u>cation</u>		
	a)	Town(s):		State Project No.(s):
	b)	Highway:		Station(s):
	c)	Location F	Relative to Highway Landmark:	
	d)	Stream:		
	e)	Location F	Relative to Stream Landmark:	
2)	<u>De</u>	sign Flood		
	a)	Hydrologi	c Procedure Used for Design:	
	b)	Hydrologi	c Procedure Used by FEMA:	
	c)	Drainage A	Area:	
	d)	ConnDOT	Drainage Manual Structure Classi	fication:
	e)	Design Sto	orm Frequency:	
	f)	Required U	Underclearance at Design Discharg	e:
	g)	Design Dis	scharge:	
		i.	D.O.T. Design:	
		ii.	FEMA:	
		iii.	SCEL:	
3)	<u>Hy</u>	draulic Ana	alysis Procedure	
	a)	Model Use	ed and Version No.:	
	b)	Flow Regi	me:	
	c)		Conditions (starting water surface ace, normal depth, critical depth, ra	e at the ends of the river system – i.e. known ting curve, etc.):

9.A-14 Bridges

		i.	Downstream:			
		ii.	Upstream:			
	d)	Other Met	hod(s):			
4)		Hydraulic Control (i.e. culvert/bridge, dam (weir), channel construction, tide, known water surface elevation, etc.)				
	a) Type of Control:					
	b)	b) Location Relative to Proposed Construction:				
5)	<u>Co</u>	Coefficients of Roughness				
	a)	Downstrea	nm: Channel	Overbank		
	b)	At Crossin	ng: Channel	Enclosed Conduit		
	c)	Upstream:	Channel	Overbank		
5)	<u>Ex</u>	Existing Structures				
	Upstream:					
	a)	Type:				
	b)	b) Gross Waterway Opening:				
	At Site:					
	a)	Type:				
	b)	b) Gross Waterway Opening:				
	c)	Effective Waterway Opening:				
	d)	d) Overall Width of Waterway Opening:				
	e)	e) Effective Depth of Waterway Opening:				
	f)	f) Minimum Low Chord Elevation:				
	g)	Minimum	Roadway Elevation:			

h) Computed Water Surface Elevation at Approach Section Upstream of Structure at Design Discharge:

- i) Underclearance at Design Discharge:
- j) Mean Velocity of Channel:

Downstream:

- a) Type:
- b) Gross Waterway Opening:

7) Proposed Structure

- a) Type:
- b) Gross Waterway Opening:
- c) Effective Waterway Opening:
- d) Overall Width of Waterway Opening:
- e) Effective Depth of Waterway Opening:
- f) Minimum Low Chord Elevation:
- g) Minimum Roadway Elevation:
- h) Computed Water Surface Elevation at Approach Section Upstream of Structure at Design Discharge:
- i) Maximum Regulatory Elevation:
- j) Other Controlling Water Surface Elevation (If Below Maximum Regulatory Elev.):
- k) Difference in Water Surface Elevation (Approach Section) Proposed vs. Existing and Proposed vs. Regulatory @ Design Discharge:
- 1) Underclearance at Design Discharge with Respect to Structure Low Chord:
- m) Mean Velocity Through Structure:

9.A-16 Bridges

8) Remarks

- a) Navigational Requirements:
- b) Tidal Conditions:
- c) Record Floods:

d) Average Daily Flow:
$$Q_{AD}(cms) = [A (km^2)]^{0.98} * 0.0208$$
 ($Q_{AD}(cfs) = [A (sm)]^{0.98} * 1.87$)

e) Average Spring Flow:
$$Q_{AS}(cms) = [A (km^2)]^{0.988} * 0.04$$
 ($Q_{AS}(cfs) = [A (sm)]^{0.988} * 3.62$)

- f) Flood Hazard Zone:
- g) Vertical Datum: