1982 STATE OF CONNECTICUT ANNUAL AIR QUALITY SUMMARY Department of Economental finicals Am Complique Unit 165 Lapro Average Here of the Contr ****** 10 40 40 4

TABLE OF CONTENTS

																								PAGE
	LIS	r Ol	F T	ABL	ES	•			•	•	•	•	• -		•		. •	•	•	•	•	. •	•	iii
	LIS	r O	F F	IGU	IRES	5	•					•	•	•	•	. 0	• .	•	•		•	•	•	v
I.	INT	RODI	UCT	ION	1.	•	•	•	•	0	•	•	•	•		•	•	• .	•	•	•	٠.	•	1
	A. (Pc	1,1	ut	an	t	Co	onc	cen	tr	at	ic	ns	;		, .		:_
	•	in (Con	nec	tic	cut	•	•	•	•	•	•.	•	•	•	•	•	•	•	•	•	٠	•	1
		1. '								ar	ti	CL	ıla	ate	es	•	•		•	•		•	•	1
		2.			. D:	KOi	ic	le	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	1 2
		3. (4.]			•	ņ;	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		4. j								•	•	•	•	٠	•	•	•	•	•	•	•	•	•	3
		6. :								•	•	•	•	•	•	•								3
•		. .	LCu	u .	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•				
	в.	Tre	nds	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
		1. '	TSP	,			•			•		•		•	•	•	•	•	•		•	•	•	7
		2.	so ₂	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	8
	C.	Air	Мо	nit	or	ing	1	le t	two	ork	ζ.	•	•	•	•	•	•	•	•	•	•	•	•	19
	D.	Air	Qu	ali	ity	St	ar	nda	arc	ls	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	E.	Pol	lut	ant	t S	tar	nda	arc	ls	II	nde	х		•	•	•	•	•	•	•	•	•	:•	20
	F.	Qua	lit	.y 2	Ass	ura	ano	ce	•		9	•		•	•		•	•	•	•	•	•	•	23
		1.	Dre	ci	zio:	n								_		_	_		•					23
		2.					•	•			•	•	•						•	•			•	24
II.	TOT	'AL	SUS	PEI	NDE:	D I	PA!	RT:	I CI	UL	ATI	ES			•	•	•		•	•	•		•	25
III.	SIII.	GIIT.	זח י	.UX.	ארו ז						_		_							•		•		105
						•	·	•	•	•	·	·	•	•								_	_	120
•	ozo								•	•	•													
v.	NIT	'ROG	EN	DI	OXI	DE	•	•	•	٠	•	•	•	•	•	٠	•			•				137
VI.	CAR	RBON	MC	ОИО	XID	E	. •	•	•	•	•	•	•	•	•	•	•	•	•	.•	•	•	•	144
VII.	LEA	D.	٠	. •	• •	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	152
VIII.	CLI	TAM	OLO	OGI	CAL	D.	AT.	A		•	•	•			•	•	•	•	•	•	•	•	•	177
~	ATT	7 % T **	13 (T) Y	767	a ret	h.T.	^14	_ %	W.L.	ΆТ	rtra.	ווא ים	771	○ ₽	N T	a a	റട	T	Ň					
IX.	CON	.AIN	MEI TIC	CUT	עמא 'S	N. QA	ON CR	'S	T.T.	Λ.I.	0 TAÍAT	, M	· ·	J.	7.4		دير		•	•	•	•	•	184

TABLE OF CONTENTS

		PAGE
х.	CONNECTICUT SLAMS AND NAMS NETWORK	187
XI.	EMISSIONS INVENTORY	196
XII.	PUBLICATIONS	214
XIII.	ERRATA	218

LIST OF TABLES

TABLE NUMBER	TITLE	PAGE
1	Air Quality Standards Exceeded in Connecticut in 1982 Based Solely upon Measured Concentrations	4
2	TSP Trend, 1968-1982 (Wilcoxon Signed-Rank Test)	11
3	Equivalent SO ₂ Trend from Sulfation Rate, 1968-1982 (Wilcoxon Signed-Rank Test)	13
3A	SO ₂ Trend from Continuous Data, 1978-1982 (Wilcoxon Signed-Rank Test)	15
4	Assessment of Ambient Air Quality	21
5	1980-1982 TSP Annual Averages and Statistical Projections	32
6	Confidence of Compliance with Annual TSP Standards during 1982	37
7	1982 Maximum 24-Hour TSP Concentrations	38
8	Summary of the Statistically Predicted Number of Sites Exceeding the 24-Hour TSP Standards	41
9	Quarterly Chemical Characterization of Hi-Vol TSP, 1982	42
10	Monthly Chemical Characterization of Lo-Vol TSP, 1982	85
11	1982 Ten Highest 24-Hour Average TSP Days with Wind Data	87
12	1982 Annual Arithmetic Averages of Sulfur Dioxide at Sites with Continuous Monitors	111
13	1982 Sulfur Dioxide Annual Averages and Statistical Projections	112
14	1982 Maximum 24-Hour Running Average Sulfur Dioxide Concentrations	113
15	Comparisons of 1982 First and Second High Running and Calendar Day 24-Hour Sulfur Dioxide Averages	114

TABLE NUMBER	TITLE	PAGE
16	1982 Maximum Running 3-Hour Sulfur Dioxide Concentrations	115
17	1982 Ten Highest 24-Hour Average Sulfur Dioxide Days with Wind Data	116
18	Number of Days on Which the 1-Hour Ozone Standard Was Exceeded	125
19	1982 Highest 1-Hour Ozone Values by Month	126
20	1982 Maximum 1-Hour Ozone Concentrations	127
21	1982 Ten Highest 1-Hour Average Ozone Days with Wind Data	128
22	1982 NO ₂ Annual Averages and Statistical Projections	140
23	1982 Ten Highest 24-Hour Average NO ₂ Days with Wind Data	141
24	1982 Carbon Monoxide Standards Assessment Summary	148
25	1982 Carbon Monoxide Seasonal Features	149
26	1982 Ten Highest 1-Hour Average CO Days with Wind Data	150
27	1982 3-Month Running Average Lead Concentrations	155
28	1981 and 1982 Climatological Data, Bradley International Airport, Windsor Locks	178
29	1981 and 1982 Climatological Data, Sikorsky Memorial Airport, Stratford	179
30	Connecticut's Compliance with the NAAQS (by AQCR) for 1982	186
31	U.S. EPA-Approved Monitoring Methods Used in Connecticut in 1982	190
32	1982 SLAMS and NAMS Sites	191
33	Summary of Probe Siting Criteria	194
34	1982 Connecticut Department of Environmental Protection Emissions Inventory by County	197

LIST OF FIGURES

FIGURE NUMBER	TITLE	PAGE
1	Total Suspended Particulate Matter Trend	12.
2	Sulfur Dioxide Trend from Sulfation Rate Data	14
2A	Annual Geometric Mean Concentrations of SO ₂ from 1978-1982	16
2B	The Average of the Annual Geometric Mean SO ₂ Concentrations at 5 Concurrently Operating SO ₂ Sites with Continuous Monitors	17
2C	Three-Year Running Averages of the Annual Geometric Mean SO ₂ Concentrations at 5 Concurrently Operating SO ₂ Sites with Continuous Monitors	18
3	Pollutant Standards Index	22
4	Location of 1982 Total Suspended Particulate Matter Instruments	31
5	Location of 1982 Continuous Sulfur Dioxide Instruments	110
6	Location of 1982 Chemiluminescent Ozone Instruments	124
7	Wind Rose for April-September 1981, Bradley International Airport, Windsor Locks, Connecticut	133
8	Wind Rose for April-September 1982, Bradley International Airport, Windsor Locks, Connecticut	134
9	Wind Rose for April-September 1981, Newark International Airport, Newark, New Jersey	135
10	Wind Rose for April-September 1982, Newark International Airport, Newark, New Jersey	136
11	Location of 1982 Nitrogen Dioxide Instruments	139
12	Location of 1982 Carbon Monoxide Instruments	147
A	Location of 1982 Lead Instruments	154
13	3-Month Running Averages for Lead	156

FIGURE NUMBER	TITLE	PAGE
14	Annual Wind Rose 1981, Bradley International Airport, Windsor Locks, Connecticut	180
15	Annual Wind Rose 1982, Bradley International Airport, Windsor Locks, Connecticut	181
16	Annual Wind Rose 1981, Newark International Airport, Newark, New Jersey	182
17	Annual Wind Rose 1982, Newark International Airport, Newark, New Jersey	183
18	Connecticut's Air Quality Control Regions	185
19	State of Connecticut County Map	198
20	1982 Connecticut Department of Environmental Protection Emissions Inventory by County, Total Suspended Particulates	199
21	1982 Total Suspended Particulates, Total Emissions by County	200
22	1982 Total Suspended Particulates, Total Emissions by County, Three-Dimensional View of TSP Emissions	201
23	1982 Connecticut Department of Environmental Protection Emissions Inventory by County, Sulfur Dioxide	202
24	1982 Sulfur Dioxide, Total Emissions by County	203
25	1982 Sulfur Dioxide, Total Emissions by County, Three-Dimensional View of SO ₂ Emissions	204
26	1982 Connecticut Department of Environmental Protection Emissions Inventory by County, Carbon Monoxide	205
27	1982 Carbon Monoxide, Total Emissions by County	206
28	1982 Carbon Monoxide, Total Emissions by County, Three-Dimensional View of CO Emissions	207
29	1982 Connecticut Department of Environmental Protection Emissions Inventory by County, Volatile Organic Compounds	208

FIGURE NUMBER	TITLE	PAGE
30	1982 Volatile Organic Compounds, Total Emissions by County	209
31	1982 Volatile Organic Compounds, Total Emissions by County, Three-Dimensional View of VOC Emissions	210
32	1982 Connecticut Department of Environmental Protection Emissions Inventory by County, Nitrogen Oxides (Expressed as NO ₂)	211
33	1982 Nitrogen Oxides (Expressed as NO ₂), Total Emissions by County	212
34	1982 Nitrogen Oxides (Expressed as NO ₂), Total Emissions by County, Three-Dimensional View of NOx Emissions	213

I. INTRODUCTION

The 1982 Air Quality Summary of Ambient Air Quality in Connecticut is a compilation of all air pollutant measurements made at the Department of Environmental Protection (DEP) air monitoring network sites.

A. Overview of Air Pollutant Concentrations in Connecticut

This section briefly describes the status of Connecticut's air quality for the year 1982. The measured concentrations of six pollutants are compared to two categories of Federal and State air quality standards. The first is the primary standard which is established to protect public health with an adequate margin of safety; the second category is the secondary standard which is established to protect plants and animals and to prevent economic damage. More detailed discussions of each of the six pollutants are provided in subsequent sections of this Air Quality Summary.

1. Total Suspended Particulates (TSP)

Measured total suspended particulates (TSP) levels did not exceed the primary annual standard of 75 ug/m³ or the secondary annual standard of 60 ug/m³ in Connecticut during 1982. No sites recorded measured values exceeding the primary 24-hour standard of 260 ug/m³ in 1982, but measured values at two (2) sites exceeded the secondary 24-hour standard of 150 ug/m³, down from fourteen (14) sites in 1981. Two (2) exceedances of the 24-hour standard are required at a particular site for the standard to be violated. No sites recorded measured values which violated the secondary standard by exceeding the 150 ug/m³ level at least two times (see Table 1).

In general, measured TSP levels were slightly higher in terms of annual average concentration values in 1982, as compared to 1981.

2. Sulfur Dioxide (SO2)

None of the air quality standards for sulfur dioxide were exceeded in Connecticut in 1982. Measured concentrations were below the 80 $\rm ug/m^3$ primary annual standard, the 365 $\rm ug/m^3$ primary 24-hour standard, and the 1300 $\rm ug/m^3$ secondary 3-hour standard.

The continued attainment of the SO_2 standards can be primarily attributed to Connecticut's low sulfur-in-fuel regulations.

.

The results of sulfation rate monitoring indicate that sulfur dioxide levels were significantly lower in 1982 than 1981. Temperature is an important factor in determining SO2 emissions. The general decrease in measured SO2 levels was probably due to the fact that, for coastal Connecticut, 1982 was warmer than 1981. The last quarter of 1982 was warmer statewide compared to the last quarter of 1981. This can be shown by the number of "degree days": a measure of heating requirement. As the number of degree days increases, the amount of fuel that must be burned to heat buildings also increases (see Tables 28 and 29); the more fossil fuel burned, the greater the emissions of sulfur oxides.

3. Ozone (O3)

standard for ozone of 0.12 ppm for a one-hour average. level is not to be exceeded more than once per year. Furthermore, in order to determine compliance with the 0.12 ppm ozone standard, EPA directs the states to record the number of daily exceedances of 0.12 ppm at a given monitoring site over a consecutive 3-year period and then calculate the average number of daily exceedances for this interval. If the resulting average value is less than or equal to 1.0; that is, if the fourth highest daily value in a consecutive 3-year period is less than 0.12 ppm, the ozone standard is considered attained. The definition of the pollutant was also changed along with the numerical value partly because the instruments used to measure photochemical oxidants in the air really measure only ozone. Ozone is only one of a group of chemicals which are formed photochemically in the air and are called photochemical oxidants. In the past, the two terms have often been used interchangeably. This 1982 Air Quality Summary uses the term "ozone" in conjunction with the new NAAQS to reflect the changes in both the numerical value of the NAAQS and the definition of the pollutant.

The primary 1-hour ozone standard was exceeded at all the DEP monitoring sites in 1982 (see Table 1).

The incidence of ozone levels in excess of the 1-hour 0.12 ppm ozone standard increased from 1981 to 1982 (see Tables 18 and 19). Some of this difference is attributable to the changes in meteorological factors which occur from year-to-year. High temperatures and strong sunlight in the presence of hydrocarbons and oxides of nitrogen facilitate the formation of ozone. The prevailing southwest wind transports hydrocarbons and nitrogen oxides generated in the New York City Metropolitan Area into Connecticut. Along the way, these chemicals react in the presence of strong sunlight, forming ozone. Consequently, the ozone levels across Connecticut are

- 2

highest when the prevailing wind flow is out of the southwest (see Table 21). However, there are recorded exceedences of the NAAQS for ozone on non-southwest wind days, and this indicates that pollution control programs currently being implemented in this state are needed to protect the public health of Connecticut's citizenry on days when this state is responsible for its own pollution problem.

4. Nitrogen Dioxide (NO2)

The method by which the DEP measures NO_2 was changed in 1981. This change was the reason for the incomplete nature of the 1981 data. 1982 was the first full year the DEP used continuous electronic analyzers to measure NO_2 levels. The annual average NO_2 standard, 100 ug/m³, was not exceeded in 1982 at any site in Connecticut.

5. Carbon Monoxide (CO)

The primary eight-hour standard of 9 ppm was exceeded at three of the five carbon monoxide monitoring sites in Connecticut during 1982 (see Table 1). These sites were Hartford 012, New Britain 002, and Stamford 020. The standard was exceeded three times at each of these sites. In 1981, at Stamford 020, the standard was exceeded 113 times. The large decrease in exceedances at this site is attributed to changing traffic flow of the nearby street to one-way.

There were no violations of the primary one-hour standard of 35 ppm.

A definite decrease in carbon monoxide levels took place between 1981 and 1982.

6. Lead (Pb)

The primary and secondary ambient air quality standard for lead is 1.5 ug/m^3 , maximum arithmetic mean averaged over three consecutive calendar months. As in 1981, the lead standard was not exceeded at any site in Connecticut during 1982.

A downward trend in measured concentrations of lead has been observed since 1978. This trend is probably due to the increasing use of unleaded gasoline.

ا يا ي

TABLE 1

AIR QUALITY STANDARDS EXCEEDED IN CONNECTICUT IN 1982 BASED SOLELY UPON MEASURED CONCENTRATIONS

ON MONOXIDE	1 Exceeding	8-Hour/1-Hour	Standards	st	Level	-Hour Standard		>	< :	×		×	×	×	×	×	: ×	: ×	: ×			.4	/	: ×		×	×	×	×	×	×	×	×	×	×	×	-/g==	×	×	×	×	×	ı	3
CARBON	Leve	H-8	S	Highes	Observed	8-Hour/1	mdd)	>	()	×	1	×	×	×	×	×	×	: ×	: ×	×	×	: ×	×	: ×	9.44	×	×	×	×	×	×	×	×	×	×	×	-/6.6	×	×	×	×	×	ľ	>
OZONE		Exceeding	Standard	Number	of Days	Standard	Exceeded	>	〈 :	×	×	×	თ	×	×	×	: o :	ı (C	· ×	×	T.	. 60	×	×	×	×	×	-	×	×	×	×	19	×	×	×	×	×	×	×	11	×	×	>
0		Level	- 1	Highest	Observed	Level	(mdd)	>	〈 :	×	×	×	0.183	×	×	×	0.201	0.153) ×	×	0 237	0.198	×	: ×	×	×	×	0.220	×	×	×	×	0.181	×	×	×	×	×	×	×	0.155	×	×	>
ATES	ceeding	, 24-Hour		Number	of Times	Standard	Exceeded	•	-	i	×	1	1	ı	1	1	ı	×	: 1	ı	×	: ×	: 1	ı	×	ŧ	ı	×	ı	ť	1	1	×	1		1	×	1	1	ı	×	ı	×	
٩	Level	Secondary	Standard	Highest	Observed (Level	(mg/m3)	000	667	1	×	ı	1	1		ı	ı	×	()	1	×	: ×	. 1	1	×	1	•	×	1		1	1	×	1	ı	•	×	í	1	1	×	į	×	
TOTAL	Level Exceeding	Secondary Annual	Standard	Highest	Observed	Level	(ng/m3)	ı	I	•	×	ł	1	1	ı	i	j	×	(1	i	×	×	: 1	f	×	1	I	×	ı	1	1	1	×	1	1	ı	×	ı	1	1	×	1	×	
							SITE	0	200	001	004	600	123	001	001	000	103	003	400	008	017	100 000	000	003	012	013	014	002	001	002	800	003	700	002	001	001	002	007	900	600	010	002	200	. (
							TOWN		Ansona	Bridgeport	Bridgeport	Bridgeport	Bridgeport	Bristol	Burlington	Darbins	Oscilla Surviva	The Hartford	The Hartford	Greenwich	40.0000	Gro+00	E M T T M T	Hartford	Hartford	Hartford	Hartford	Madison	Manchester	Meriden	Meriden	Middletown	Middletown	Milford	Morris	Naugatuck	New Britain	New Britain						

TABLE 1, continued

AIR QUALITY STANDARDS EXCEEDED IN CONNECTICUT IN 1982 BASED SOLELY UPON MEASURED CONCENTRATIONS

OXIDE	eding	Hour	Number	of Times	Standard	Exceeded	×	×	×	×	×	×	×	×	-/B	×	×	×	×	×	×	×	×	×	×
CARBON MONOXIDE	Level Exceeding	8-Hour/1-Hour Standards	Highest	Observed Level	8-Hour/1-Hour	(mdd)	×	×	×	×	×	×	×	×	-/1.6	×	×	×	×	×	×	×	×	×	×
OZONE		Level Exceeding 1-Hour Standard	Number	of Days	Standard	Exceeded	თ	×	×	×	×	10	×	×	×	×	×	22	×	×	×	×	×	×	×
020		Level E	Highest Numbe	Observed	Level	(mdd)	0.190	×	×	×	×	0.196	×	×	×	×	×	0.233	×	×	×	×	×	×	×
ATES	Exceeding	/ 24-Hour Jard	Number	of Times	Standard	Exceeded	×	1	ı	1	1	×	J	,	×	ł	1	×	1	4	1	ı	_	ı	f
TOTAL SUSPENDED PARTICULATES	Level E	Secondary 24-Hou Standard	Highest	Observed (Level	(ng/m3)	×	1	ŧ	1	1	×	1	1	×	ı	1	×	ı	1	•	ľ	185	ı	1
TOTAL SUSPEN	Level Exceeding	Secondary Annual Standard	Highest	Observed	Level	(ng/m3)	×	ı	ſ	ı	ı	×	i	ı	×	ŧ	ł	×	ŀ	ı	ţ	1.	1	ſ	ı
						SITE	123	001	005	012	100	100	100	200	020	021	005	200	100	100	005	900	007	001	002
						TOWN	New Haven	Norwalk	Norwalk	Norwalk	Norwich	Stafford	Stamford	Stamford	Stamford	Stamford	Stratford	Stratford	Voluntown	Wallingford	Waterbury	Waterbury	Waterbury	Waterford	Willimantic

X: Pollutant not monitored at site -: No violation

-5-

B. Trends

Any attempt to assess statewide trends in air pollution levels must account for the tendency of local changes to obscure the statewide pattern. In order to reach some statistically valid conclusions concerning trends in pollutant levels in Connecticut, the DEP has applied the Wilcoxon matched pairs, signed rank statistical test to the annual average data for two pollutants. The Wilcoxon test has been applied to 1968-1982 total suspended particulate (TSP) data, to 1968-1982 sulfation rate/sulfur dioxide (SO₂) data, and to 1978-1982 continuous SO₂ data.

The Wilcoxon Test is a non-parametric test which can ascertain statistically significant changes (increases or decreases) in the annual average pollutant concentrations at all the monitoring sites in Connecticut. The test makes it possible to overcome the trend analyses problems which arise due to the changes in the number and location of monitoring sites from year-to-year, as well as problems associated with making equitable comparisons among sites. The annual mean levels for consecutive years are compared at each site; there is no inter-site comparison. Data for two consecutive years are required and the size of the (increase or decrease) is noted. For example, if proportion of sites experienced an increase and/or magnitude of an increase at several sites is of much greater importance than the magnitude of a decrease at other sites, the test will show if the increase was statistically significant for those two years.

The results of the Wilcoxon test for TSP, sulfation rate/SO2 and continuous SO₂ data are presented in Tables 2, 3 and 3A, respectively. These analyses were performed only on data computed for sites where the U.S. Environmental Protection Agency (EPA) minimum sampling criteria were met. The years of data that were mean and standard deviation of the pollutant concentrations at the sites are provided in the first four columns of each table. The statistical significance of any change in the statewide pollutant average is provided in the last three columns of each table. significance of change is indicated by arrows for two confidence limits, 95% and 99%, and is also given numerically as the number of chances in 10,000 under the heading "actual significance of For example, the statewide annual average for decreased between 1971 and 1972 from 68.4 to 61.9. The downward arrows indicate that this change represented a significant decrease at the 95% and 99% confidence levels. The "actual significance of change" is given as 0.0013, meaning that there are only 13 chances in 10,000 that this measured decrease in TSP levels did not occur.

1. TSP

The results from the Wilcoxon test for TSP (see Table 2) show that total suspended particulate levels in Connecticut decreased significantly from 1968 to 1969. From 1969 through 1971 there was no significant change. Then, from 1971 to 1974 TSP levels decreased significantly again, but from 1974 to 1975 this decreasing trend was reversed and TSP levels demonstrated a significant increase. TSP concentrations remained relatively constant from 1975 to 1977 and 1978. Between 1978 and 1979 there was a significant, but exceedingly large, reduction of measured concentrations. Between 1979 and 1980 there was a significant drop in measured TSP levels. This has been attributed to the elimination of passive sampling error through the use of retractable lids on the hi-vol monitors. The lids retract when the monitor is in operation and return to a covered position when it is not in operation. This prevents any particulates from depositing on, or being removed from, the filter during non-operating hours. TSP levels again fell significantly from 1980 to 1981: the From 1981 to largest decrease in concentrations since 1973. 1982 TSP levels increased slightly. These trend analyses do not account for the uncertainty associated with the individual annual mean computed for each TSP site. Most TSP sampling is conducted only every sixth day, producing a total of 61 Therefore, the Wilcoxon test year. samples per of the sampling date year-to-year averages compares concentrations, not actual annual averages. However, every-sixth-day sampling schedule is believed to be sufficient representative annual averages. produce every-sixth-day schedule for TSP sampling did not start until 1971. Since fewer samples were taken at each site for 1968 to 1970 than during recent years, the test results from the early years are not as conclusive as the results from the later years.

Significant changes in annual TSP levels can also be caused simply by changes of weather, particularly the wind. Such changes probably explain most of the decrease in TSP levels observed between 1968 and 1969, the increase observed between 1974 and 1975, and the decrease from 1977 to 1979. The persistent decrease in TSP levels observed from 1971 to 1974 (amounting to 20 ug/m³), however, can certainly be attributed to the emission controls implemented by DEP during those years.

Figure 1 shows the long-term trend of TSP concentrations in Connecticut in a graphical form. The trend chart is based on data obtained from both high volume and low volume sampling devices. High volume sampler data are included only if there was a sufficient number of samples taken in each year to compute valid geometric means. Low volume sampler data are included for those sites where low volume samplers replaced high volume samplers in 1976.

$2. SO_2$

Connecticut has been measuring ambient levels of sulfur dioxide since prior to the inception of the SO2 standards in 1971. Several monitoring methods have been employed over that time including bubblers, sulfation plates, and various types of continuous instruments. The bubblers became the EPA reference method, but unfortunately, the field data have turned out to be very unreliable. The sulfation plates have been in use for 10 years and the data are reliable, but they do not measure SO2 directly. Continuous monitors presently yield reliable data, but this has not always been the case. earliest monitors continuous (conductometric coulometric) were subject to interference from many chemicals other than SO2 and also had difficulties with quality As a result, these monitors produced unreliable control. data. Later generations of instruments (flame photometric and pulsed fluorescent) alleviated these problems, and there has been a corresponding increase in the reliability of the data, especially since 1978.

In order to perform a valid trend analysis, the data for the period of interest must be reliable and from similar sampling methods. Up until 1978, the only method which fit these criteria was the sulfation plate. Between 1978 and 1982 there were approximately three times as much sulfation rate data as continuous SO2 data and the former method was used for the purpose of analyzing SO2 trends. However, the air quality standards are not written in terms of sulfation rate, rather as SO_2 concentrations. There are suggested conversions in the literature. In order determine the "best" conversion to use in Connecticut, DEP undertook a study comparing SO2 levels with sulfation rate. This study involved exposing three sulfation plates at the same location with a flame photometric or pulsed fluorescent continuous SO₂ monitor. Monthly averages were taken at 11 sites, from November, 1975 through September, 1978, resulting in a data set of 245 matched pairs. The sulfation rates and SO2 levels were compared using a least squares regression technique. The equation resulting from this is as follows:

 SO_2 (ppm) = 0.0056 + 0.0195 (sulfation rate)(mg/100 cm²/day)

The level of significance of this regression equation was found to be less than 0.001, and the associated sample correlation coefficient was 0.72.

By means of the above equation and other conversion factors, historical sulfation rate data were then converted to equivalent SO₂ levels and these levels were used as input to the Wilcoxon test previously described.

The results of the Wilcoxon test are presented in Table 3. Beginning in 1977, SO_2 levels decreased significantly through 1979. From 1979-1980 measured SO_2 levels rose significantly, but fell significantly from 1980-1982.

As with TSP, annual changes in SO2 levels can be caused simply by changes in weather. The dramatic step-by-step drop in SO2 levels from 1970 to 1973 corresponds exactly to the step-by-step phase-in of Connecticut's low sulfur-in-fuel regulations. As of September 1, 1971, the oil sold and burned in Connecticut was limited to a sulfur content not to exceed 1.0%. As of September 1, 1972, the sulfur content of the oil sold in Connecticut could not exceed 0.5%, and the burning of oil with a higher sulfur content than 0.5% was not allowed after April 1, 1973. The inescapable conclusion is that the implementation of these sulfur-in-fuel regulations caused the significant reduction in SO_2 levels from 1970 to 1973, such that all SO_2 standards have been attained in Connecticut. During the winter of 1973 to 1974, certain utilities were given emergency permission to burn higher sulfur oil and coal. The temporary increase in SO2 levels observed in 1974 could have been due in part to this relaxation of the sulfur-in-fuel limitations. The increase from 1979 to 1980 can be attributed to the fact that the winter months of 1980 were colder than 1979. In colder winter months, more oil is required for energy to heat homes. Between 1980 and 1981, SO2 levels decreased slightly.

In response to the skyrocketing prices of low sulfur in the late 1970's, most states relaxed their sulfur-in-fuel requirements to the full extent the law allows, creating considerable pressure on Connecticut to follow suit. This caused Connecticut to reevaluate its philosophy for controlling sulfur oxide emissions in 1981. To meet the challenge of a new high cost fuel economy, DEP restructured its air pollution control requirements for fuel burning this "three-pronged" Under new program Connecticut's businesses and industries are (1) now allowed (effective November 1981) to burn a less expensive grade of oil with a higher sulfur content -- one percent (1.0%) sulfur oil and (2) are allowed to burn higher sulfur content oil in exchange for reductions in energy use.

The third aspect of the program is the repeal of the 24-hour air quality standard for sulfur oxides. This action increased statewide sulfur oxide emissions by almost 60%. (Sulfur oxide emissions were not doubled by going from 0.5% to 1.0% sulfur-in-fuel since residential fuel users, which account for almost one-third of annual statewide sulfur oxide emissions, use distillate fuel oil with a sulfur content of 0.5%.) One would have expected measured SO2 levels to increase in 1982, as compared to 1981, due to the use of 1.0% sulfur oil; however, the trend was slightly down. This may be attributable to the year-to-year fluctuations in meteorology or the decreased fuel use caused by the increased price of this energy source.

The long-term trend of SO₂ concentrations, as determined from the sulfation rate data, is shown in graphical form in Figure 2.

Recent information now indicates that sulfation rate-derived SO₂ values may not be as accurate as once thought. Sulfation rate data are dependent on relative humidity and wind speed — being extremely sensitive to the latter — and the precision of the data suffers even under uniform conditions. Furthermore, EPA has requested that DEP use continuous SO₂ data in order to analyze SO₂ trends. Consequently, a second SO₂ trend analysis between 1978 and 1982 using continuous SO₂ data was conducted and is summarized in Table 3A and Figures 2A, 2B and 2C.

3A indicates that there has been little year-to-year change in ambient SO2 levels since 1978. Continuous SO₂ monitors were operated each year at five (5) sites between 1978 and 1982. Based on measurements at these five (5) locations, mean SO₂ levels are depicted in Figures Figure 2A shows SO2 levels decreasing at four 2A and 2B. (4) sites and exhibiting essentially no trend at the fifth site. Figure 2B shows the average of the mean SO_2 concentrations for all the sites steadily decreasing over the Using the data presented in Figure 2B, Figure 5-year period. 2C shows the three-year running average of the mean SO2 concentrations. Three-year running averages tend to smooth out the year-to-year effects of meteorology on pollutant Like Figures 2A and 2B, Figure 2C illustrates again levels. that SO₂ levels are decreasing. In any event, neither the trend analysis using sulfation rate data nor the one using continuous data indicates an increase in ambient SO2 levels between 1981 and 1982, even though fuel-burning sources were allowed to use 1% sulfur oil in 1982.

To there any need to correct this? Next year we use "t tost"

TSP TREND, 1968-1982 (WILCOXON SIGNED-RANK TEST)

Paired Years	Number <u>Of Sites</u>	Average Of Annual Geometric Means* (ug/m3)	Standard Deviation (ug/m3)		nificance d at 99% Level**	Level Actual Sig- nificance Of Change
68 69	17/6	73.6 74.9 66.9 67.8	21. <i>67</i> 18. <i>67</i>	+	+	0.0067
69 70	21 21	69.0 71.7	23.0 25.5	N.C.	N.C.	0.2891
70 71	23 23	67.8 66.2	20.6 18.2	N.C.	N.C.	0.34585
71 72	40 40	68.4 61.9	22.5 17.3	\		0.0013
72 73	39 39	59.1 51.9	13.4 10.2	\	†	<0.00005
73 74	41 41	51.9 48.3	11.6 10.3	\	N.C.	0.0143
74 75	40 40	49.9 52.3	10.7 10.1	†	N.C.	0.0101
75 76	29 29	53.2 ³ 53.1 ³	9.8 9. <i>35</i>	N.C.	N.C.	0.9310 0.7539
76 77	35 35	53.6 53 <i>,</i> 76	8.8 9.2/	N.C.	N.C.	0.8505
77 78	30 30	54.86 52.78	9.8 9.3	\	N.C.	0.0333 0.0166
78 79	32 32	51.45 49.9	12.1 12.5	N.S.	N.C.	0.0407
79 80	32 32	49.3 45.4	13.2 10.0	\	ţ	<0.00005
80 81	26 26	45.2 38.0	10.1 8.4	\	.	<0.00005
81 82	37 37	38.3 40.5	6.8 8.0	† .	†	<0.00005

^{*} Note that as the year pairings change, the sites available also change. This explains the different averages for a given year, i.e., the averages are taken from different sets of sites.

^{↑ =} Significant Upward Trend

TOTAL SUSPENDED PARTICULATE MATTER TREND

"PERCENT OF SITES WITHIN EACH RANGE"

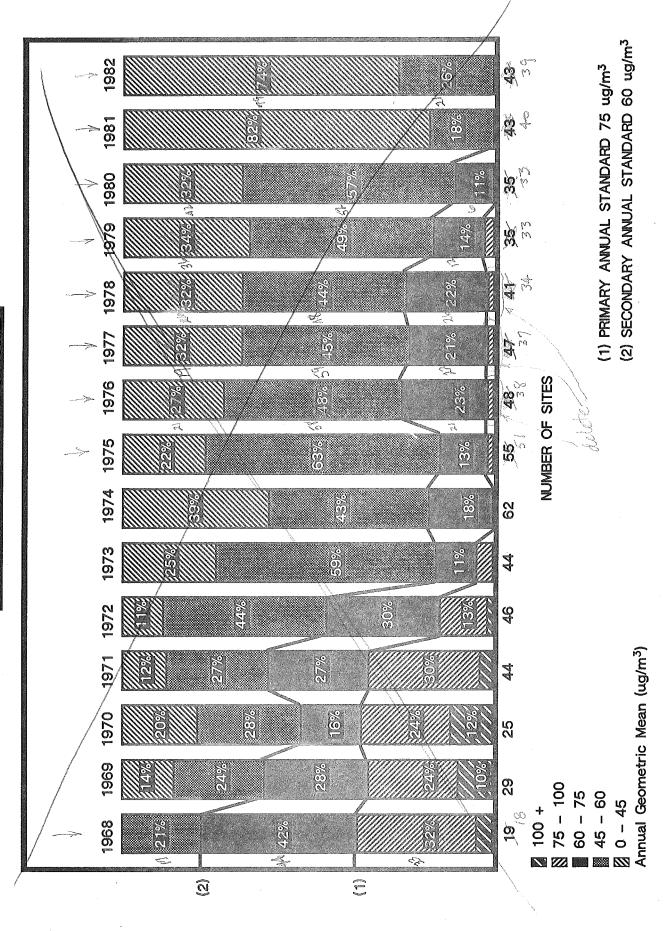


TABLE 3

EQUIVALENT SO2 TREND FROM SULFATION RATE, 1968-1982 (WILCOXON SIGNED-RANK TEST)

Paired <u>Years</u>	Number <u>Of Sites</u>	Average Of Annual Arithmetic <u>Means*</u>	Standard <u>Deviation</u>	<u>Sig</u> Trend 95% Level**	nificance at 99% Level**	Level Actual Sig- nificance Of Change
68 69	12 12	75.4 65.3	29.3 21.3	N.C.	N.C.	0.0619
69 70	22 22	56.6 64.4	18.8 20.3	<u>†</u>	†	0.0006
70 71	34 34	62.4 50.1	20.9 13.9	\psi	¥	<0.00005
71 72	40 40	51.6 40.3	14.9 6.8	¥	¥	<0.00005
72 73	38 38	41.3 34.0	6.9 4.5	¥	+	<0.00005
73 74	25 25	35.4 38.2	5.2 6.3	†	.	0.0004
74 75	25 25	35.9 33.2	8.2 7.8	.	¥	0.0002
75 76	18 18	33.1 33.6	7.7 6.0	N.C.	N.C.	0.1070
76 77	29 29	35.2 34.9	4.7 4.3	N.C.	N.C.	0.8009
77 78	25 25	35.1 30.4	4.2 3.4	\	.	<0.00005
78 79	25 25	30.0 27.8	4.1 3.1	¥		0.0001
79 80	25 25	27.8 29.2	3.1 3.4	†	†	0.0004
80 81	21 21	29.6 27.0	3.5 2.9		.	0.0001
81 82	52 52	26.6 25.4	2.7 3.1	\	\	0.0001

Note that as the year pairings change, the sites available also change. This explains the different averages for a given year, i.e., the averages are taken from different sets of sites.

^{**} Key to Symbols:

^{↓ =} Significant Downward Trend

^{↑ =} Significant Upward Trend

N.C. - No Significant Change

SULFUR DIOXIDE TREND FROM SULFATION RATE DATA

"PERCENT OF SITES WITHIN EACH RANGE"

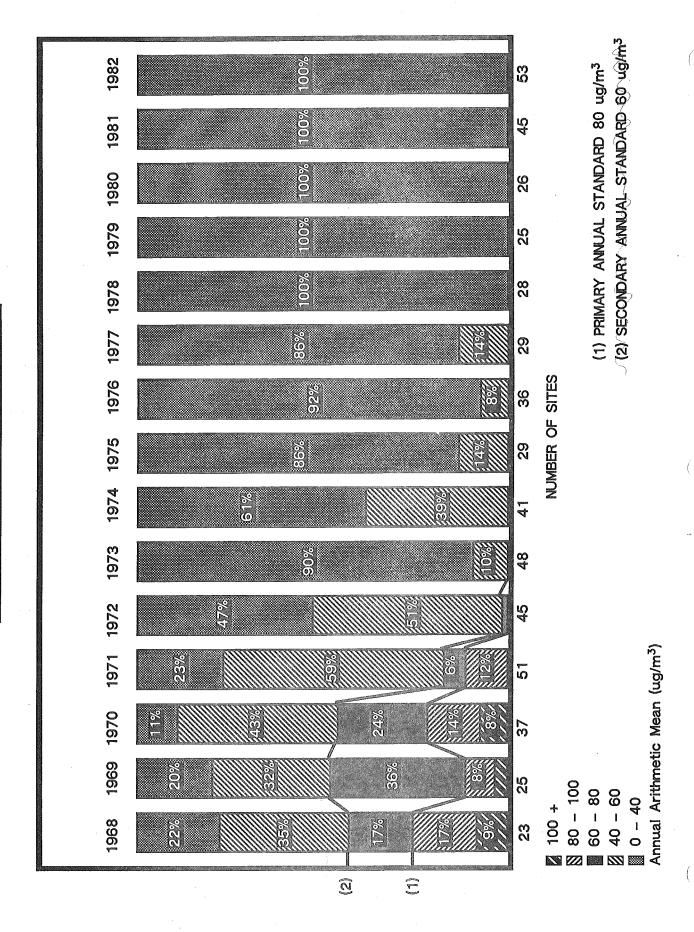


TABLE 3A

SO2 TREND FROM CONTINUOUS DATA, 1978-1982 (WILCOXON SIGNED-RANK TEST)

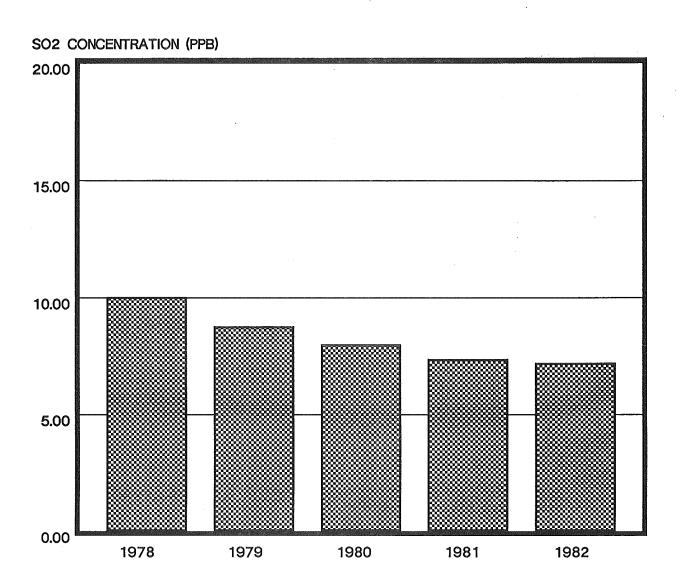
		Average Of Annual		Si	gnificanc	e Level
Paired Years	Number Of Sites	Geometric	Standard Deviation (ppb)	Trend 95% Level**	at 99% Level**	Actual Sig- nificance Of Change
78 79	J-9 79	9.149.10	2.61 2.3 2.36 2.0	4 4 N.C.	N.C.	0.06-0.10
79 80	710 710	8-14 830 7-43 1.56		M.C.	N.C.	0.070.022
80 81	78 78	7.578.04	1-811.58 1-80 1.67		N.C.	0.10 0.30
81 82	8 9	7.637.99 7.50 8.01			N.C.	.0.19 0.27

N.B. The new numbers account for all the continuous instruments. The coulometric instruments were originally annited.

En 1983 add 55%, 195%, 90% ?

^{*} Note that as the year pairings change, the sites available also change. This explains the different averages for a given year, i.e., the averages are taken from different sets of sites.

^{**} Key to Symbols: N.C. = No Significant Change


ANNUAL GEOMETRIC MEAN CONCENTRATION OF SO2 (PPB) FROM 1978-1982

1978 1979 1980 1981

FIGURE 2B

THE AVERAGE OF THE ANNUAL GEOMETRIC MEAN SO2 CONCENTRATIONS

AT 5 CONCURRENTLY OPERATING SO2 SITES WITH CONTINUOUS MONITORS

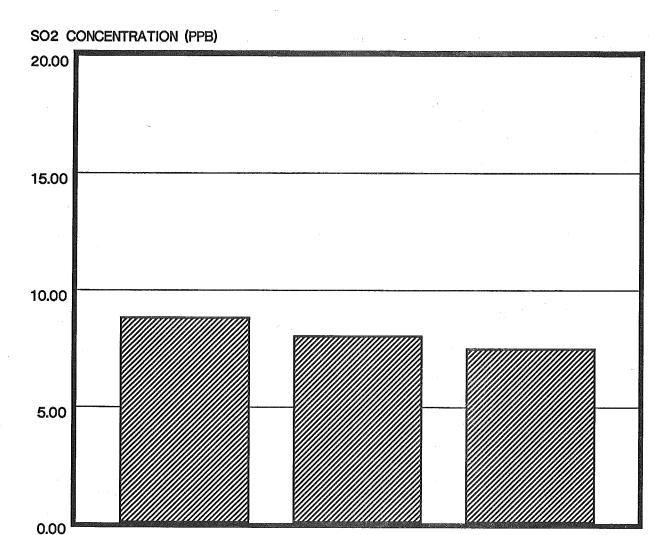


FIGURE 2C

THREE-YEAR RUNNING AVERAGE OF THE ANNUAL GEOMETRIC MEAN

SO2 CONCENTRATIONS AT 5 CONCURRENTLY OPERATING SO2 SITES WITH

CONTINUOUS MONITORS

1979-1981

1980-1982

1978-1980

Future Air Quality Summaries will no longer contain a discussion of SO_2 trends based upon sulfation rate data. Instead, all future SO_2 trend analyses will be based upon continuous SO_2 measurements.

C. Air Monitoring Network

A computerized Air Monitoring Network consisting of an IBM System 7 computer and 12 telemetered monitoring sites was put into full operation in 1975. Presently, up to 12 measurement parameters from each site are transmitted via telephone lines to the System 7 unit located in the DEP Hartford office. The data are then compiled into 24-hour summaries twice daily. The telemetered sites are located in the towns of Bridgeport, Danbury, Greenwich, Hartford, New Britain, New Haven, Stamford, and Waterbury.

Measured parameters include the pollutants sulfur dioxide, particulates (COH), carbon monoxide and ozone. Meteorological data consists of wind speed and direction, wind horizontal sigma, temperature, dew point, precipitation, barometric pressure and solar radiation (insolation).

The real-time capabilities of the System 7 telemetry network have enabled the Air Monitoring Unit to report the Pollutant Standards Index for 10 towns on a daily basis while keeping a close watch for high pollution levels which may occur during adverse weather conditions throughout the year.

The complete monitoring network used in 1982 consisted of:

- 41 43 Total suspended particulate hi-vol sites (16 are also approved lead sites)
 - 2 Total suspended particulate lo-vol sites
 - 5 Lead lo-vol sites
 - 9 Sulfur dioxide sites (continuous monitors)
 - ll Ozone sites
 - レン Nitrogen dioxide sites
 - 5 Carbon monoxide sites

A complete description of all permanent air monitoring sites in Connecticut operated by DEP in 1982 is available from the Department of Environmental Protection, Air Compliance Unit, Monitoring Section, State Office Building, Hartford, Connecticut, 06106.

D. Air Quality Standards

Table 4 lists analysis methods and National Ambient Air Quality Standards (NAAQS) for each pollutant. The NAAQS were established by the U.S. Environmental Protection Agency (EPA) and are divided into two categories: primary - established to protect the public health; and secondary - established to protect plants and animals and to prevent economic damage.

Each standard specifies a concentration and an exposure time developed from studies of the effect of various levels of the particular pollutant.

E. Pollutant Standards Index

The Pollutant Standards Index (PSI) is a daily air quality index recommended for common use in state and local agencies by the U.S. Environmental Protection Agency. Starting on November 15, 1976, Connecticut began reporting the PSI on a 7-day basis. The PSI incorporates four pollutants - carbon monoxide, sulfur dioxide, total suspended particulates and ozone. The index converts each air pollutant concentration into a normalized number where the National Ambient Air Quality Standard for each pollutant corresponds to PSI = 100 and the Significant Harm Level corresponds to PSI = 500.

Figure 3 shows the breakdown of index values for the commonly reported pollutants (TSP, SO₂, and O₃) in Connecticut. For the winter of 1982, Connecticut reported the PSI for the towns of Hartford, New Haven, Bridgeport, Stamford, Greenwich, Danbury, Waterbury, and New Britain. For the summer, the PSI was reported for the towns of Bridgeport, Danbury, East Hartford, Greenwich, Groton, Madison, Middletown, New Britain, New Haven, Stafford, and Stratford. Each day the pollutant with the highest PSI value of all the pollutants being monitored is reported for each town, along with the dimensionless PSI number and a descriptor word to characterize the daily air quality.

A telephone recording of the PSI is taped each afternoon at 3 PM, seven days a week, and can be heard by dialing 566-3449. For residents outside of the Hartford telephone exchange, the PSI is now available toll-free from the DEP representative at the Governor's State Information Bureau. The number is 1-800-842-2220. This information is also available to the public weekday afternoons from the Connecticut Lung Association in East Hartford. The number there is 289-5401.

TABLE 4

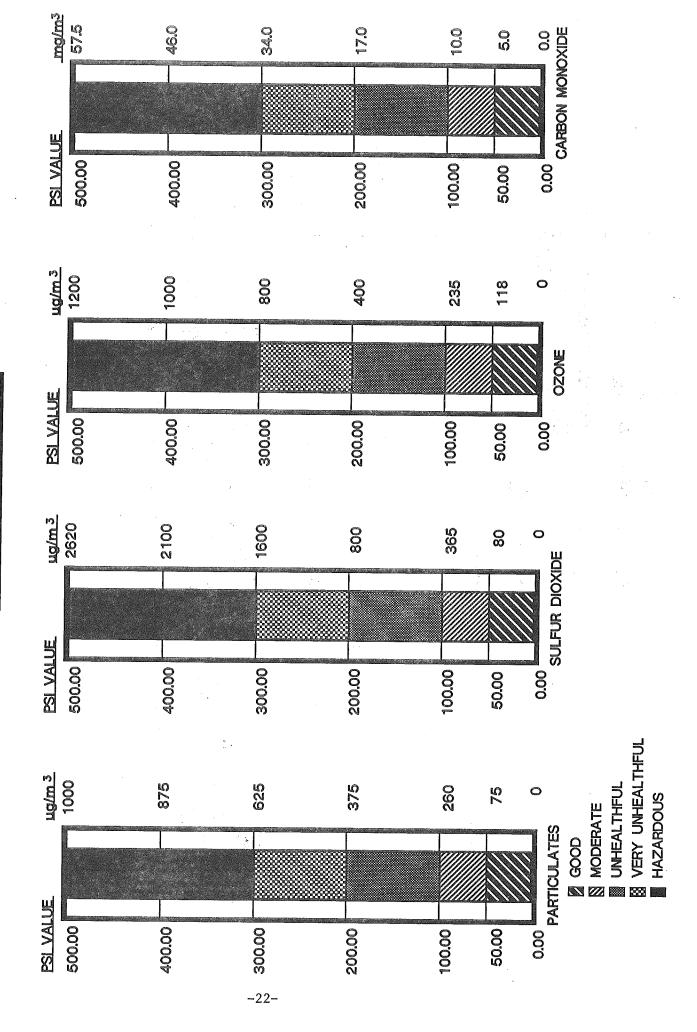
ASSESSMENT OF AMBIENT AIR QUALITY

TANDARDS	SECONDARY	Ug/m3 ppm	60* 150	1300 0.50	Same as Primary	Same as Primary	Same as Primary.	Same as Primary Same as Primary
QUALITY S	PRIMARY STANDARD	mdd		0.03	0.05	0.12		ວ ທ
NT AIR	PRI	Ug/m3	75 260	80 365	100	235	7.5	10 40 * *
NATIONAL AMBIENT AIR QUALITY STANDARDS	STATISTICAL BASE		Annual Geometrig Mean 24-Hour Average	Annual Arithmetic Mean 24-Hour Average 3-Hour Average	Annual Arithmetic Mean	1-Hour Average ⁴	3-Month Average	8-Hour Average3 1-Hour Average3
	DATA REDUCTION		24~Hour Average	1-Hour Average	1-Hour Average	1-Hour Average	Monthly Composite	1-Hour Average
	SAMPLING PERIOD		z4-mours Every Sixth Day ¹	Continuous ²	Continuous ²	Continuous ²	24 Hours Every Sixth Day ⁵	Continuous ²
	POLLUTANT	To+0T	Particulates	Sulfur Oxides (Measured as Sulfur Dioxide)	Nitrogen Dioxide Continuous ²	Ozone	Lead	Carbon Monoxide

i EPA assessment criteria require at least 5 samples per calendar quarter, and, if one month has no samples, then the other two months in that quarter must have at least two samples each.

EPA assessment criteria require 75% of possible data to compute valid averages.

Not to be exceeded more than once per year.


Not to be exceeded more than an average of once per year in three years.

State of Connecticut assessment criteria require 75% of possible data to compute valid averages.

A guide to be used in assessing implementation plans to achieve the 24-hour standard.

Units: ug/m3 = micrograms per cubic meter; mg/m3 = milligrams per cubic meter; ppm = parts per million

POLLUTANT STANDARDS INDEX

F. Quality Assurance

Quality Assurance requirements for State and Local Air Monitoring Stations (SLAMS) and the National Air Monitoring Stations (NAMS) which, as part of the (SLAMS) network, are specified by the code of Federal Regulations, Title 40, Part 58, Appendix A.

The regulations were enacted to provide a consistent approach to Quality Assurance activities across the country so that ambient data with a defined precision and accuracy is produced.

To this end a Quality Assurance program was initiated in Connecticut with written procedures covering, but not limited to, the following:

Equipment Procurement
Equipment Installation
Equipment Calibration
Equipment Operation
Sample Analysis
Maintenance Audits
Performance Audits
Data Handling and Assessment

Quality Assurance procedures for the above activities were initiated and fully operational on January 1, 1981 for all NAMS monitoring sites. On January 1, 1983 the above procedures will be initiated and fully operational for all SLAMS monitoring sites.

Data precision and accuracy values are reported in the form of 95% probability limits as defined by equations found in Appendix A of the Federal regulations cited above.

1. Precision

Precision is a measure of data repeatability (grouping) and is determined in the following manner:

a. Manual Samplers (TSP and Lead)

A second (co-located) TSP hi-vol sampler is placed alongside a regular TSP network sampler and operated concurrently. The concentration values from the co-located hi-vol sampler are compared to the network sampler and precision values are generated from the comparison.

of March of the

b. Automated Analyzers (SO2, O3, CO and NO2)

All NAMS and SLAMS analyzers are challenged with a low level pollutant concentration (.08 to .10 PPM) a minimum of once every two weeks. The comparison of analyzer response to input concentration is used to generate automated analyzer precision values.

2. Accuracy

Accuracy is an estimate of the closeness of a measured value to a known value: i.e., how close each value is to the bull's eye.

Manual Methods (TSP and Lead) а.

accuracy is assessed by auditing the measurement phase of the TSP sampling method. Connecticut this is accomplished by attaching secondary standard calibrated orifice to the hi-vol inlet and comparing the flow rates. A minimum of 25% of the TSP network samplers are audited each quarter.

Cb. Automated Analyzers (SO2, O3, CO and NO2)

Automated analyzer data accuracy is determined by challenging each analyzer with three predetermined concentration levels. Accuracy values calculated for a number of analyzers, in a pollutant sampling network, at each concentration Automated analyzer response is audited at three concentration levels and zero. The results for each concentration for a particular pollutant are used to automated analyzer accuracy. The concentration levels are as follows:

SO ₂ , O ₃ , NO ₂ (PPM)	4 (CO PPM)
0.03 to 0.08		3 to 8
0.15 to 0.20	1	5 to 20
0 35 to 0 45		5 to 45

Statistical computations are performed the results of the precision and span checks.

Manual Methods (Lead)

head accuracy is assessed by analyzing spiked audit strips and comparing the analyzed results to the known spiked values. A lowand a high-valued spike are analyzed during lead felter processing -- approximately once per month.

II. TOTAL SUSPENDED PARTICULATES

Health Effects

Particulates are solid particles or liquid droplets small enough to remain suspended in air. They include dust, soot, and smoke -- particles that may be irritating but are usually not poisonous -- and bits of solid or liquid substances that may be highly toxic. The smaller the particles, the more likely they are to reach the innermost parts of the lungs and work their damage.

The harm may be physical: clogging the lung sacs, as in anthracosis, or coal miners' "black lung" from inhaling coal dust; asbestosis or silicosis in people exposed to asbestos fibers or dusts from silicate rocks; and byssinosis, or textile workers' "brown lung" from inhaling cotton fibers.

The harm may also be chemical: changes in the human body caused by chemical reactions with pollution particles that pass through the lung membranes to poison the blood or be carried by the blood to other organs. This can happen with inhaled lead, cadmium, beryllium, and other metals, and with certain complex organic compounds that can cause cancer.

Many studies indicate that particulates and sulfur oxides (they often occur together) increase the incidence and severity of respiratory disease.

Conclusions

Two different time categories are used in the standards that limit exposure to high levels of TSP. One is the annual standard, which protects the public from any long-term effects. The other is the 24-hour standard, the purpose of which is to insure that TSP levels are minimized for the short-term. If either standard is violated at a site, the region in which the site is located is then considered to have a non-attainment status.

Measured TSP levels did not exceed the primary annual standard of 75 ug/m^3 or the secondary annual standard of 60 ug/m^3 during 1982. And no sites had a measured value exceeding the primary 24-hour standard of 260 ug/m^3 . The 24-hour secondary standard of 150 ug/m^3 was exceeded, at least once, at 2 monitoring sites in 1982, compared to 14 sites in 1981. However, in order to violate the secondary standard, the second highest TSP level must also exceed 150 ug/m^3 . No sites violated the standard in 1982, whereas six sites did in 1981.

Overall, measured total suspended particulate levels in Connecticut increased from 1981 to 1982. As can be seen in Table 2, the average of the annual mean concentrations increased slightly in 1981-82, but is still well below earlier years. The number of sites increased dramatically from 26 in 1980-81 to 37 in 1981-82, but only 2 sites exceeded the 24-hour secondary standard in 1982, as compared to 14 sites in 1981.

More than half of the particulate emissions in Connecticut are caused by motor vehicles. One third of these emissions are due to fuel combustion. Most of the remaining two-thirds occurs when road dust is stirred up by the motion of the vehicles; so road dust emissions are not dependent upon fuel combustion, but rather upon vehicle miles traveled (VMT's). VMT's for 1982 increased by less than one percent over 1981, while gasoline consumption continued to decrease. In 1982 the decrease in gasoline consumption amounted to one-half of one percent.

Sample Collection and Analysis

Hi-volume Sampler (Hi-vol) - "Hi-vols" resemble vacuum cleaners in their operation, with an 8" x 10" piece of fiberglass filter paper replacing the vacuum bag. Retractable lids have been installed on the hi-vols in order to eliminate the passive sampling error. The samplers operate (from midnight to midnight) every sixth day at most sites and every third day at certain urban stations.

The matter collected on the filters is analyzed for weight and chemical composition. The air flow through the filter is recorded during sampling. The weight in micrograms (ug) divided by the volume of air in cubic meters (m^3) yields the pollutant concentration for the day, in micrograms per cubic meter.

The chemical composition of the suspended particulate matter is determined as follows. A standardized strip of every hi-vol filter collected in each quarter-year is cut-out and made into one composite sample. This procedure is repeated three times so that three quarterly composite samples are made for each site. One of the composite filter samples is digested in benzene. The organic materials in the sample dissolve and are extracted into the benzene. The benzene is evaporated and the organic residue is weighed. The weight of this residue represents the organic material in the sample and the result is reported as the benzene soluble fraction of the TSP, in ug/m³. (This method of determining the benzene solubles, or organic, fraction of the particulates was used until 1977 when the analysis for benzene solubles was discontinued because of health hazards associated with the use of benzene, which is a carcinogen). Another sample is dissolved in water, re-fluxed and the resulting solution is analyzed to determine the water soluble fraction of the TSP using

wet chemistry techniques. Results are reported for each individual constituent of the water soluble fraction in ug/m^3 . The last composite sample is digested in acid and the resulting solution is analyzed for the different metals in the TSP using an atomic absorption spectrophotometer. Results are reported for each individual metal in ug/m^3 .

Lo-volume Sampler (Lo-vol) - The low-volume sampler is a 30-day continuous sampler. It is enclosed in a shelter similar to a hi-vol, uses the same glass fiber filter paper, but operates at an air sampling flow rate approximately one-tenth that used by a standard hi-vol (i.e., 4 cfm as opposed to 40-60 cfm). The air flow through the lo-vol is measured by a temperature compensating dry gas meter. The lo-vol measurement is essentially an arithmetic average for the 30-day sampling interval. The filters are chemically analyzed in the same manner as those from the hi-vol sampler.

Discussion of Data

Monitoring Network - In 1982 both hi-vol and lo-vol particulate samplers were operated in Connecticut (see Figure 4). Because the Federal EPA does not recognize the lo-vol instrument as an equivalent to the reference (hi-vol) method of sampling for TSP, only hi-vol data are analyzed for compliance with the National Ambient Air Quality Standards (NAAQS).

Precision and Accuracy - Precision checks of 39 hi-vol samplers yielded 95% probability limits ranging from -8% to +9%. Accuracy is based on air flow through the monitor. The 95% probability limits for accuracy, based on 148 audits conducted on the monitoring system, ranged from -8% to +3%.

Annual Averages - The Federal EPA has established minimum sampling criteria (see Table 4) for use in determining compliance with either the primary or secondary annual NAAQS for TSP. Using the EPA criteria, one finds that neither the primary annual standard nor the secondary annual standard was exceeded. Of the 37 sites that had valid annual geometric means in both 1981 and 1982, only seven sites had lower annual geometric means when compared to 1981. Of the thirty sites whose annual geometric means increased, only five increased more than 5 ug/m³ (see Table 5).

Historical Data - The DEP's historical file of annual average TSP data for 1980-1982 is presented in Table 5. (For data going back to 1957, see the 1980 Air Quality Summary.) This table also includes an indication of whether the aforementioned EPA minimum sampling criteria were met at each site for each year. If the sampling was insufficient to meet the EPA criteria, an asterisk appears next to the number of samples.

.

Statistical Projections - The statistical projections presented in Table 5 are prepared by a DEP computer program which analyzes data from all sites operated by DEP. Input to the program includes site location and year, the number of samples (usually a maximum of 61), the annual geometric mean concentration and the geometric standard deviation. The program lists the input and calculates the 95% confidence limits about the mean and the statistical projections of the number of days in each year the primary and secondary 24-hour NAAQS would have been exceeded if sampling had been conducted every day. This analysis, like the ambient standards, is based on the assumption that the particulate data are log-normally distributed.

Because manpower and economic limitations dictate that hi-vol sampling for particulate matter cannot be conducted every day, a degree of uncertainty is introduced as to whether the air quality at a site has either met or exceeded the national standards. This uncertainty for the annual standard can be quantified by determining 95% confidence limits about each of the annual geometric means. For example (see Table 5), in Danbury at site 002 in 1982, 58 samples were analyzed and a geometric mean of 48.7 ug/m³ was then calculated. The columns labeled "95-PCT-LIMITS" show the lower and upper limits for a 95% confidence interval of 43 and 55 ug/m^3 , respectively. This means that if a larger (i.e., greater than 58 samples) sample set were collected in 1982 at this site there is a 95% chance that the geometric mean would fall between these limits. If the upper limit happened to be greater than 60 $\text{ug/m}^3,$ the national ambient secondary standard for particulates, then one could not be 95% confident that the secondary standard was met.

In Table 6, one can examine the 1982 monitoring sites for compliance with air quality standards, using the State's hi-vol confidence limit criteria. The table shows that no sites exceeded the primary annual standard with 95% confidence. The table also shows that the DEP is 95% confident that the secondary standard was not exceeded at any sites during 1982.

24-Hour Averages - Table 7 presents the 1st and 2nd high 24-hour concentrations recorded at each site. There were no violations of the primary 24-hour standard recorded in Connecticut during 1982. Measured violations of the secondary 24-hour standard were recorded at no sites in 1982, six less than in 1981. The 2nd high 24-hour average increased at ten of the 37 paired sites which met the minimum EPA sampling criteria in both 1981 and 1982. Only one of these increases at Stamford 001 exceeded 25 ug/m³. The 2nd high 24-hour average decreased at 26 of the sites, and eleven of these decreases exceeded 25 ug/m³. The 2nd high decreased 69 ug/m³ at Waterbury 007 while an even larger decrease of 126 ug/m³ was recorded at Wallingford 001. At one site, New Britain 007, the 2nd high remained the same.

;

Table 8 summarizes the statistical predictions from Table 5 regarding the number of days exceeding the 24-hour standards. This table shows that, if sampling had been conducted every day in 1982, there would have been no sites with violations of the primary 24-hour standard and eleven (11) sites with violations of the secondary 24-hour standard. In 1981, no sites were predicted to have exceeded the primary 24-hour standard and fourteen (14) sites were predicted to have exceeded the secondary 24-hour standard.

Hi-vol Averages - Quarterly and annual averages of fourteen components or characteristics of the particulate matter collected at each hi-vol sampling location have been computed for the year 1982 and are presented in Table 9. The abbreviations used in the table are defined below. All the quarterly averages shown are arithmetic means.

Ammonium - Ammonium ion

Be - Beryllium

Cd - Cadmium

Count - Number of samples

Cr - Chromium

Cu - Copper

Fe - Iron

Mn - Manganese

Ni - Nickel

Nitrate - Total nitrates

Pb - Lead

pH - Acidity

Sulfate - Total sulfates

TSP - Total suspended particulates

V - Vanadium

Z - Zinc

Lo-vol Averages - For a number of years, the DEP has been experimenting and gathering data with the lo-vol particulate monitor. Lo-vols, which operate continuously for 30-day periods, have three advantages and one disadvantage in relation to hi-vols. First, the lo-vol's continuous operation can provide annual averages which include every day of the year, rather than only the fractional portion of the year sampled by hi-vols every sixth day or every third day. Second, the lo-vol needs less frequent servicing (12 times/year) than the hi-vol (61 times/year for every-sixth-day sampling); so it is more cost-effective to operate. Third, the lo-vol has a higher collection efficiency than the hi-vol, especially for small, respirable particles. A disadvantage of the lo-vol is that it does not provide daily samples for direct comparison to the 24-hour TSP standards (although 24-hour averages can be obtained by statistical interpolation).

The two lo-vol sites are located at rural locations. One site is in Mansfield and the other is in Putnam. The use of the lo-vols made it possible to continue to obtain data on annual average particulate levels at these rural sites.

Monthly and annual averages of the chemical components from the lo-vol TSP monitors have been computed for 1982 and are presented in Table 10. The abbreviations used in Table 10 are identical to those used in Table 9.

, ; ()

10 High Days with Wind Data - Table 11 lists the 10 highest 24-hour average TSP readings with the dates of occurrence for each TSP hi-vol site in Connecticut during 1982. This table also shows the average wind conditions which occurred on each of these The resultant wind direction (DIR, in compass degrees from north) and velocity (VEL, in mph), the average wind speed (SPD, in mph), and the ratio between the velocity and the speed are presented for each of four National Weather Service stations located in or near Connecticut. (The resultant wind direction and velocity are vector quantities and are computed from individual wind direction and speed readings in each day.) closer the wind speed ratio is to 1.000, the more persistent the Note that the Connecticut stations have local influences which change the speed and shift the direction of the near-surface flow (e.g., the Bradley Field air flow is channeled north-south by the Connecticut River Valley and the Bridgeport air flow is subject to frequent sea breezes).

On a statewide basis, this table shows that by far most high TSP days occur with southwesterly winds and most of those days have persistent winds. This relationship between southwest winds and high TSP levels is more predominant in southwestern Connecticut. However, many of the maximum levels at some urban sites do not occur with southwest winds, indicating that these sites are more influenced by local sources than by the transport of TSP with southwest winds. As noted above, a large scale southwesterly air flow is often diverted into a southerly flow up the Connecticut River Valley. At many sites in the Connecticut River Valley most of the highest TSP days occur when the winds at Bradley Airport are from the south.

An examination of Table 11 reveals that March 30 and July 16 show up as either the first or second high for more sites than any other date. The winds on March 30 were persistently from the south-southwest, while on July 16 the winds were from the west-southwest. In both cases there was no precipitation for the previous three days. These weather conditions are typical of high level TSP days in Connecticut.

٠,

· v

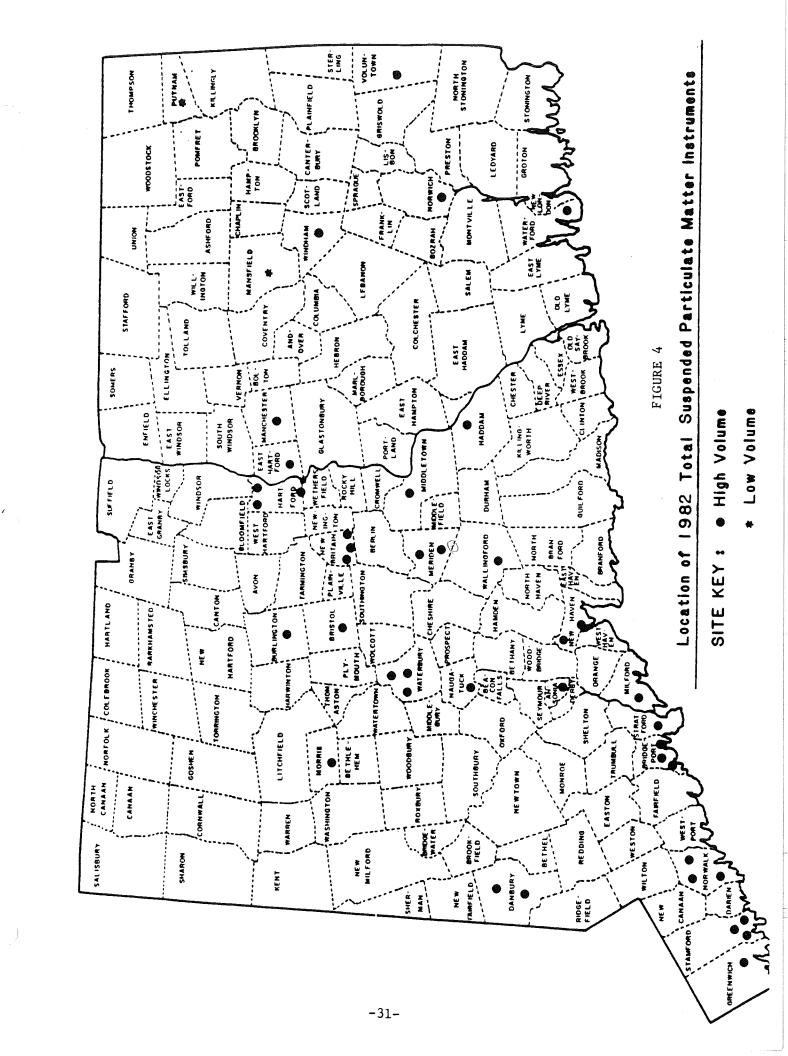


TABLE 5

1980-1982 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTIONLOGNORMAL	PREDICTED PREDICTED DAYS OVER 150 UG/M3 260 UG/M3			1.701	1.651 2	01		21	£ 4	07	,	, i	**	01 79		30				1	u.		51		3						7	
	STD GEOM DEV	•	-	7	1.	1.601		1.521	1.556	1.507		1.507	•	1.564	1.587	1.530	•	1.522	1.703	1.684	1 445	1 697	1.615	7	P00.1	ě	1,596		T+/-T	1.674	1.677	
	95-PCT-LIMITS LOMER UPPER	73	0	47	47	34		53	7	47	29	f 3	•	69	56	09	ì	0	39	41	7.7	53	21	87) L	q	55	79	ř	64	45	
	· -	9	P (40	40	27	ļ	43	36	38	¥	3 6	1	09	64	53	4.4	7	20	32	23	20	19	17		Ĵ	\$. W	1	38	56	
	GEOM MEAN	51.5	1	42.0	43.4	30.3		o./+	39.6	45.4	38.6	39.8		63.8	52.0	56.3	7 (7	7 7 7	o.	36.3	25.3	21.6	19.9	42.3	7 69		48.9	30		43.2	32.9	
	SAMPLES	105	٥١		116	95	93	0	61	09	8	61		120	120	115	23	. g	3 :	29	117	119	117	57	3	₹	58	20		7	13	
	YEAR	1980	1981		7961	1980	1980		1881	1982	1981	1982		1980	1981	1982	1980	1981		1982	1980	1981	1982	1981	1982	,	1980	1981		7961	1982	
	SITE	03	03		ŝ	01	5	;	T ;	0	60	60		123	123	123	01	6	16	7	10	01	01	05	0.2	1	123	123	101	571	3	
	TOWN NAME	ANSONIA	ANSONIA	ANCONTA	V Tubocare	BERLIN	BRIDGEPORT	POTOCOOOT	DATOGETURI	BKIDGEPOKI	BRIDGEPORT	BRIDGEPORT		BRIDGEPORT	BALDGEPORI	BRIDGEPORT	BRISTOL	BRISTOL	ADICTOL	DAISIUL	BURLINGTON	BURLINGTON	BURLINGTON	DANBURY	DANBURY		DANBURY	DANBURY	O Attack to V	I NOGEN	EAST HARTFORD	

TABLE 5, CONTINUED
1980-1982 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

PREDICTED DAYS OVER 260 UG/M3											
PREDICTED DAYS OVER 150 UG/M3		Ħ	ሪ ખ		N A N	.e	Ø	es.	gradi	ΝИ	60
STD GEOM DEV	1.514	1.647	1.580 1.613 1.513	1.609	1.506 1.536 1.558	1.591	1.691	7.485 1	1.536 1.683 1.607	1.496 1.827 1.444	1.652
95-PCT-LIMITS LOWER UPPER	7	4 0 4	7 4 4 6 5 7 7	19 0 0 M M M	500 100 100 100 100 100 100 100 100 100	4 4 7	3 4 3 W	19	4 8 4 6 4 4 0	N 4 4	63
95-PCT- LOMER	34	32 26	4 W W	2 4 4 2 4 4 2 4 4	51 66 66	33	36	20	35 8 8 35 8 8	47 41 41	6.7
GEOM MEAN	37.3	35.7	51.5 40.2 43.4	31.4 27.0 26.9	53.7 46.7 47.6	36.7	38.9 39.6	55.2	888 882. 88. 88.	6.13 40.5 7.4 7.	55.6
SAMPLES	59	59	56 59 59	60 58 57	121 118 91*	9 53	09	57	60 60 60	59 60 57	57
YEAR	1980	1980	1980 1981 1982	1980 1981 1982	1980 1981 1982	1981	1981	1980	1980 1981 1982	1980 1981 1982	1980
SITE	123	44	0 0 0 0 0	000	033	13	\$ \$ 11 11	123	600	002	05
TOWN NAME	ENFIELD	GREENMICH	GREENWICH GREENWICH GREENWICH	HADDAM HADDAM HADDAM	HARTFORD HARTFORD HARTFORD	HARTFORD HARTFORD	HARTFORD HARTFORD	HARTFORD	MANCHESTER MANCHESTER MANCHESTER	MERIDEN MERIDEN MERIDEN	MERIDEN

TABLE 5, CONTINUED

1980-1982 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

_
44
300
謺
œ
0
9
*
w
0
_
÷
Ser.
0
Ē
-
_
×
œ
H
œ
_
ഗ
H

PREDICTED DAYS OVER 260 UG/M3						<i>‡</i>		
PREDICTED DAYS OVER 150 UG/M3	Ħ	н	Ħ		нып	el el		MMH
STD GEOM DEV	1.677	1.468 1.666 1.524	1.454 1.589 1.497	1.557 1.707 1.517	1.577 1.718 1.718	1.562 1.607 1.674 1.598	1.634 1.468	1.535 1.645 1.519 1.491
95-PCT-LIMITS LOWER UPPER	£ £	51 43 43	ቴቴኒ የተተ	32 26 27	50 46 53	w 4 4 4 6 0 W	4 4 4 45 55	61 54 54 54
95-PCT. LOWER	30	44 34 35	41 36 36	28 22 24	40 35 41	%	31 37 40	49 41 40
GEOM MEAN	36.0 38.8	46.8 38.4 38.9	45.2 40.4 39.7	29.6 24.1 25.5	4.44.4 4.0.2 4.6.8	36.9 35.2 38.2	35.0 40.1 42.6	54.8 46.1 48.2 42.9
SAMPLES	35* 57	5 6 9 8 8 8 9 8	59 61	111 114 102	59 59	115 120 59 60	59 58 111	52 54 49 111
YEAR	1981 1982	1980 1981 1982	1980 1981 1982	1980 1981 1982	1980 1981 1982	1981 1982 1981 1982	1981 1982 1980	1980 1981 1982 1982
SITE	90	03 03 03	002	01 01 01	01 01	07 07 08 08	09 09 123	002 002
TOWN NAME	MERIDEN Meriden	MIDDLETOWN MIDDLETOWN MIDDLETOWN	MILFORD MILFORD MILFORD	MORRIS MORRIS MORRIS	NAUGATUCK NAUGATUCK NAUGATUCK	NEW BRITAIN NEW BRITAIN NEW BRITAIN	NEW BRITAIN NEW BRITAIN NEW BRITAIN	NEM HAVEN NEM HAVEN NEM HAVEN

TABLE 5, CONTINUED
1980-1982 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

TOWN NAME	SITE	YEAR	SAMPLES	GEOM MEAN	95-PCT-LIMITS LOWER UPPER	LIMITS UPPER	STD GEOM DEV	PREDICTED DAYS OVER 150 UG/M3	PREDICTED DAYS OVER 260 UG/M3
NEW HAVEN NEW HAVEN	123	1980	9 2 H H H H	61.7	58	66 54	1.506	ល៤	
NORMALK NORMALK	55	1981	57	41.0 42.9	9 6 M M	4 4 6 85	1.624	pd pd	
NORMALK NORWALK NORWALK	0 0 2 0 2	1980 1981 1982	118	53.7 48.3 48.2	4 4 50 6 72 73	57 52 52	1.567 1.625 1.609	ፋ ፋክ	
NORMALK NORMALK	122	1981 1982	09	4 8 9 4 4 5 4 5 4 5 4 5 4 5 6 5 6 5 6 5 6 5 6	M W W	4 8	1.586	e e	
NORWICH NORWICH NORWICH	600	1980 1981 1982	60 61 58	44.6 36.0 41.4	4 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ያ H ሪ	1.464 1.671 1.461	···:	
STAMFORD STAMFORD	1 0	1981	77 77 80 80	43.8 51.6	4 W	4. R	1.577	~ 더 너	
STAMFORD STAMFORD STAMFORD	07 07 07	1980 1981 1982	59 60 60	52.6 41.4 43.9	47 788 40	77 4 4 80 48	1.533 1.695 1.473	N	
STAMFORD STAMFORD	21	1981	60	40.9	₩ 4	4 4 73 8	1.481		
STAMFORD	123	1980	55	50.7	95	26	1.556	€1	
STRATFORD STRATFORD STRATFORD	05 05 05	1980 1981 1982	55 56 59	50.4 45.6 46.4	4 4 4 6 0 5	52 22	1.489 1.643 1.560	H M W	
VOLUNTOWN VOLUNTOWN	0010	1980 1981 1982	119	26.0 20.8 21.1	24 19 20	2 2 2 8	1.613 1.652 1.558		

TABLE 5, CONTINUED

1980-1982 TSP ANNUAL AVERAGES AND STATISTICAL PROJECTIONS

DISTRIBUTION--LOGNORMAL

TOWN NAME	SITE	YEAR	SAMPLES	GEOM MEAN	95-PCT-LIMITS LOWER UPPER	LIMITS	STD GEOM DEV	PREDICTED DAYS OVER 150 UG/M3	PREDICTED DAYS OVER 260 UG/M3
MALLINGFORD	01	1980	55	47.1	43	52	1.513	æ	
MALLINGFORD	d	1981	19	39.6	34	46	1.967	60	Para Para
MALLINGFORD	To	1982	82	43.6	40	84	1.500)	•
MATERBURY	02	1980	59	48.8	3	55	1.603	M	
MATERBURY	05	1981	20	40.3	36	949	1.608	F	
MATERBURY	0.5	1982	19	43.5	38	4	1.703	ः । ঔ	
MATERBURY	90	1981	09	39.1	34	A rů	1.764	M	
MATERBURY	90	1982	09	39.9	32	4. ਇ	1.727	M	
MATERBURY	07	1981	111	47.9	ያ	52	1.721	2	
MATERBURY	07	1982	117	49.3	94	53	1.639	· \$*	
MATERFORD	01	1980	57	34.1	31	38	1.563		
MATERFORD	07	1981	58	30.1	56	32	1.784	-	
MATERFORD	01	1982	56	27.3	24	31	1.602	• •	
MILLIMANTIC	02	1980	09	42.2	38	24	1.550	F	
WILLIMANTIC	05	1981	58	38.9	35	44	1.641		
MILLIMANTIC	05	1982	09	37.7	ያያ	42	1.551	i.e	

SAMPLING NOT RANDOM OR OF INSUFFICIENT SIZE FOR REPRESENTATIVE ANNUAL STATISTICS.

TABLE 6

CONFIDENCE OF COMPLIANCE WITH ANNUAL TSP STANDARDS DURING 1982

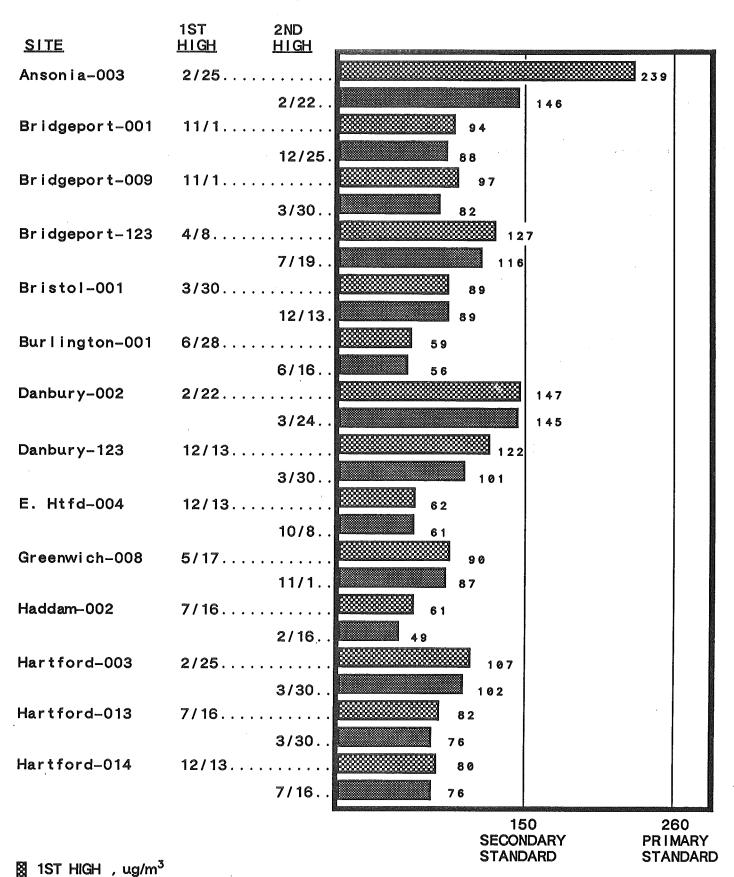
PRIMARY STANDARD Uncertain Uncertain Whether Whether Standard 95% Confident 95% Confident Standard Has Been Standard Has Been Standard Achieved Achieved Has Been

Exceeded (>60)

SECONDARY STANDARD

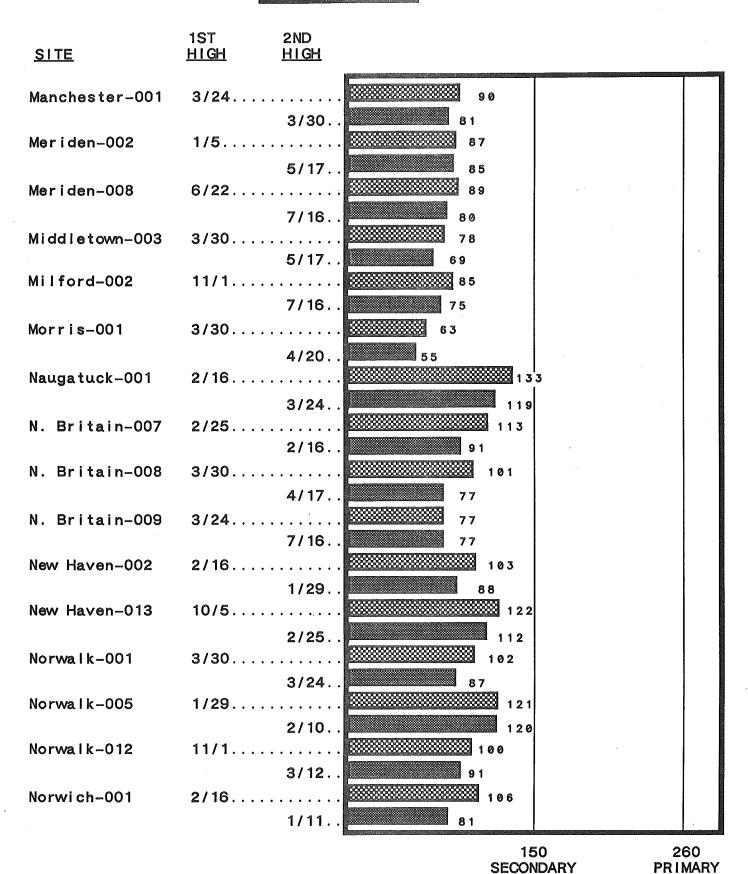
Or Exceeded

Bridgeport 123 NO SITES NO SITES NO SITES


Or Exceeded

Has Been

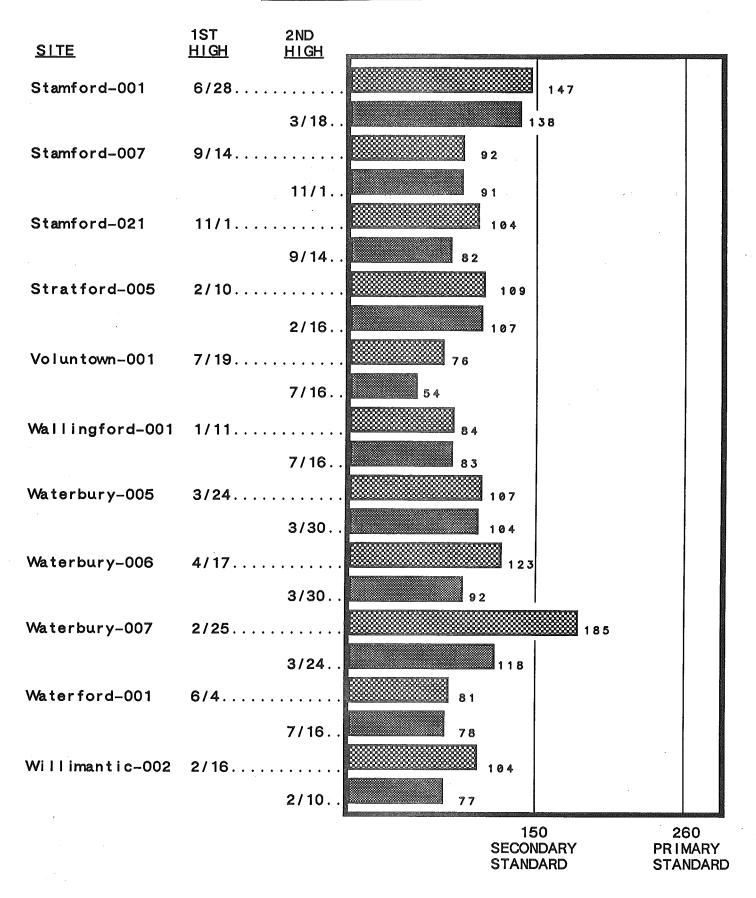
Exceeded (>75)


TABLE 7

1982 MAXIMUM 24-HOUR TSP CONCENTRATIONS

2ND HIGH , ug/m³

TABLE 7, CONTINUED



1ST HIGH , ug/m³
 2ND HIGH , ug/m³

STANDARD

STANDARD

TABLE 7, CONTINUED

IST HIGH , ug/m³
 ND HIGH , ug/m³

TABLE 8

Summary of the Statistically Predicted Number of Sites

Exceeding the 24-Hour TSP Standards

YEAR	TOTAL OF HI-VOL SITES	EXCEEDING T	H > 2 DAYS HE SECONDARY (150 ug/m3) % of Total Sites	Number of	
1971	44	37	84%	19	43%
1972	46	43	93%	13	28%
1973	44	31	70%	11	25%
1974	62	49	79%	5	8%
1975	51	38	75%	2	4%
1976	38	33	87%	1 .	3%
1977	37	25	68%	0	0%
1978	34	20	59%	5	15%
1979	33	20	61%	2	6%
1980	33	14	42%	0	0%
1981	40	14	35%	0	0%
1982	39	11	28%	0	0%

TABLE 9

			ZN 12167/92 UG/M3	0.72 0.24 0.29 44.0	0.47 58		APPROX SAMPLE COUNT	<u>4 r. 4 r.</u>	
			V 12164/92 UG/M3	0.02 0.02 0.04	0.03 58		40,0		
			NI 12136/92 UG/M3	0.014 0.007 0.007 0.011	0.010	TSP	ARITH AV 11101/91 UG/M3	78 50 38 40	58 1
1982	PROJECT 01	-	MN 12132/92 UG/M3	0.022 0.013 0.011 0.007	0.013 58	BLES	ω		
Y CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY		PB 12128/92 UG/M3	0.45 0.26 0.36 0.58	0.41 58	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 003		FE 12126/92 UG/M3	1.48 0.50 0.42 0.53	0.72 58				
AL CHARACTE	AREA 0008	METALS	CU 12114/92 UG/M3	0.16 0.17 0.15 0.12	0.15 58		PH 12602/91 PH-UNITS	7.00 3.70 8.00 7.60	7.84 58
ERLY CHEMIC	TOWN NAME ANSONIA		CR 12112/92 UG/M3	0.004 0.003 0.002 0.007	0.004	S	SODIUM 12184/92 UG/M3		
QUARTERL	VEAR 1982		CD 12110/92 UG/M3	0.0675 0.1024 0.0338 0.0139	0.0544 58	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.13 0.13 0.16	0.14 58
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	7.82 9.60 9.63	8 58 8
,			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.47 3.97 1.74	2.79 58
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.00 0.00 0.04	0.08 60.0		APPROX SAMPLE	. r. 4 r. 4	2
			V 12164/92 UG/M3		0.04		ANG	3	
			NI 12136/92 UG/M3	0.017 0.008 0.009 0.011	0.011	G G H	ARITH AV 11101/91 UG/M3	8 4 4 4 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	60
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.015 0.010 0.010	0.013	<i>U</i>	-		
-V CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY F		PB 12128/92 UG/M3	0.35 0.41 0.58	0.42	BENZ SOLIIRI ES	TOTAL 11103/91 UG/M3		•
RIZATION OF	SITE 001	ILS	FE 12126/92 UG/M3	0.77 0.53 0.48	0.56 60				
AL CHARACTE	AREA 0060	METALS	CU 12114/92 UG/M3	0.13 0.10 0.07	0.10 60		PH 12602/91 PH-UNITS	7.20 7.90 7.50 7.40	7.49 60
ERLY CHEMICA	TOWN NAME BRIDGEPORT		CR 12112/92 UG/M3	0.003 0.003 0.003	0.003		SODIUM 12184/92 UG/M3		
QUARTERL	YEAR 1982		CD 12110/92 UG/M3	0.0034 0.0018 0.0012 0.0022	0.0022 60	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.15 0.13 0.16	0.16 60
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	WAT	SULFATE 12403/92 UG/M3	9.36 9.42 9.45 1.91	10.08 60
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	4.17 2.63 2.22 1.92	2.72 60
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

1982	PROJECT 01	
F HI-VOL TSP,	AGENCV F	
RIZATION O	SITE 009	
- CHARACTE	AREA 0060	
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	TOWN NAME BRIDGEPORT	
J 1	YEAR 1982	

	•	0.04 0.07 0.07 0.02 0.03 0.03 0.03 0.03		·	APPROX SAMPLE COUNT	ក ក ក ក	
	Ψ-	0.016 0.009 0.009 0.010		TSP	ARITH AV 11101/91 UG/M3	47 47 40 40	4 4
		0.012 0.012 0.008 0.008		BLES	10		
	PB 12128/92 UG/M3	0.24 0.29 0.29 0.29	0.30	BENZ SOLÜBLES	TOTAL 11103/91 UG/M3		
METALS	FE 12126/92 UG/M3	0.56 0.53 0.40	0.46				
META	CU 12114/92 UG/M3	0.00 80.00 0.00	0.09		PH 12602/91 PH-UNITS	7.40 7.20 7.40 7.30	7.32
	CR 12112/92 UG/M3	0.002 0.003 0.002	0.003	Ş	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0043 0.0021 0.0024 0.0038	0.0032	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.15 0.15 0.15	61.0
	BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	7.96 11.60 9.25 11.32	10.05 61
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	4.05 2.56 1.62 3.50	2.94 61
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

V 12164/92 UG/M3 0.00 ARITH AV 11101/91 UG/M3 NI 12136/92 UG/M3 0.016 58 TSP 0.022 0.015 0.014 0.013 62 39 2 2 2 3 PROJECT 01 MN 12132/92 UG/M3 0.026 0.032 0.020 0.013 0.023 1982 BENZ SOLUBLES TOTAL 11103/91 UG/M3 QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP. PB 12128/92 UG/M3 AGENCY F $\begin{array}{c} 0.43 \\ 0.40 \\ 0.52 \\ 0.57 \end{array}$ FE 12126/92 UG/M3 1.12 1.39 0.98 0.60 METALS CU 12114/92 UG/M3 PH 12602/91 PH-UNITS AREA 0060 7.30 58 0.06 0.07 7.20 7.40 7.30 7.30 CR 12112/92 UG/M3 TOWN NAME BRIDGEPORT SODIUM 12184/92 UG/M3 0.004 0.009 0.005 0.004 0.006 WATER SOLUBLES CD 12110/92 UG/M3 AMMONIUM 12301/91 UG/M3 0.0034 0.0031 0.0015 0.0029 0.0027 0.14 0.15 0.15 0.15 58 **YEAR** 1982 BE 12105/92 UG/M3 SULFATE 12403/92 UG/M3 0.000 9.52 11.65 9.86 10.31 10.34 58 80 L 80 L 80 L AL 12101/92 UG/M3 NITRATE 12306/92 UG/M3 5.23 3.72 1.55 2.16 3.17

ZN 12167/92 UG/M3

0.08 0.12 0.09 0.09

APPROX SAMPLE COUNT

<u>4 n n 4</u>

QUARTER

YEAR AVG COUNT

FIRST SECOND THIRD FOURTH

YEAR AVG

FIRST SECOND THIRD FOURTH

QUARTER

TABLE 9, CONTINUED

				ZN 12167/92	00.00	0 .0 59 59		APPROX SAMPLE	00 11 10 10 10 10 10 10 10 10 10 10 10 1	<u>o</u> _	
				V 12164/92 116/M3		0.02 59			,		
				NI 12136/92 UG/M3	0.012 0.003 0.001	0.006	c G H	ARITH AV 11101/91	0 4 8 8 0 2 8 4	. 4 C	
, 1982	PROJECT 01			MN 12132/92 UG/M3	0.016 0.011 0.007 0.007	0.010	m On	11			
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY F			PB 12128/92 UG/M3	0.25 0.20 0.34	0.25 59	BENZ SOLIBLES	TOTAL 11103/91 UG/M3			
	SITE 001		ALS	FE 12126/92 UG/M3	0.72 0.43 0.27 0.35	0.44 59					
	AREA 0070			METALS	CU 12114/92 UG/M3	0.09 0.16 0.07 0.06	0.10 59		PH 12602/91 PH-UNITS	7.40 7.30 7.20	7.30 59
	TOWN NAME BRISTOL			CR 12112/92 UG/M3	0.002 0.002 0.001 0.003	0.002	S	SODIUM 12184/92 UG/M3			
	YEAR 1982			CD 12110/92 UG/M3	0.0012 0.0005 0.0007 0.0013	0.0009 59	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.15 0.15 0.08	59	
				BE 12105/92 UG/M3	90L 80L 80L 80L	0.000 59	WA	SULFATE 12403/92 UG/M3	9.14 8.37 8.20 9.80	8.92 59	
				AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	4.08 3.08 1.34	2.49 59	
				QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT	

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.03 0.05 0.01	0.03 59		APPROX SAMPLE COUNT	4450	
			V 12164/92 UG/M3	0.01	59	•	7070	·	
			NI 12136/92 UG/M3	0.004 0.002 0.003	0.003	TSP	ARITH AV 11101/91 UG/M3	27 30 24 19	59
1982	PROJECT 03		MN 12132/92 UG/M3	0.006 0.006 0.004 0.002	0.004	BLES	0		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCV F		PB 12128/92 UG/M3	0.00 0.00 0.00 0.10	0.09 59	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 001		FE 12126/92 UG/M3	0.28 0.15 0.18 0.16	59				
AL CHARACTE	AREA 0085	METALS	CU 12114/92 UG/M3	0.09	0.08 59		PH 12602/91 PH-UNITS	7.90 7.60 7.50 7.40	7.59 59
ERLY CHEMIC	TOWN NAME BURLINGTON		CR 12112/92 UG/M3	BDL 0.001 BDL BDL	0.001 59	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0006 0.0007 0.0003 0.0010	0.0007	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.09 0.07 0.05	0.07 59
			BE 12105/92 UG/M3	80L 80L 80L	0.000 59	WA	SULFATE 12403/92 UG/M3	7.99 8.56 9.01 7.96	8 50 80 80
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.21 2.06 0.62 1.51	1. 59 89
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

TABLE 9, CONTINUED

			QUAR	TERLY CHEMI	QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	RIZATION O	F HI-VOL TSP	, 1982			
			YEAR 1982	TOWN NAME DANBURY	AREA 0175	SITE 002	AGENCY	PROJECT 01			
					WE	METALS					
QUARTER	AL 12101/92 UG/M3	BE 12105/92 UG/M3	CD 12110/92 UG/M3	CR 12112/92 UG/M3	CU 12114/92 UG/M3	FE 12126/92 UG/M3	PB 12128/92 UG/M3	MN 12132/92 UG/M3	NI 12136/92 UG/M3	V 12164/92 UG/M3	ZN 12167, UG/M3
FIRST SECOND THIRD FOURTH		80L 80L 80L	0.0006 0.0012 0.0003	0.002 0.002 0.001 0.003	0.06 0.12 0.09	1.47 0.83 1.05 0.68	0.31 0.31 0.29	0.025 0.017 0.012 0.010	0.009 0.006 0.003 0.007		0000
VEAR AVG COUNT		0.000	0.0008 58	0.002	0.10 58	1.01 58	0.35	0.016 58	0.006	0.02 58	0.05 58
		WA	WATER SOLUBLES	S			BENZ SOLUBLES	BLES	TSP		
QUARTER	NITRATE 12306/92 UG/M3	SULFATE 12403/92 UG/M3	AMMONIUM 12301/91 UG/M3	SODIUM 12184/92 UG/M3	PH 12602/91 PH-UNITS		TOTAL 11103/91 UG/M3	1 6	ARITH AV 11101/91 UG/M3	, «W	APPROX SAMPLE COUNT
FIRST SECOND THIRD FOURTH	4.36 3.56 1.71 3.14	10.00 9.32 8.82 8.71	0.15 0.13 0.17		7.60 7.20 7.50 7.00				56 45 45		6476
VEAR AVG COUNT	3.14 58	9.17 58	0.15 58		7.31 58				55 58 58 58		<u>.</u>

TABLE 9, CONTINUED

			ZN 12167/92	0.00 0.00 40.00	0.06 58 58		APPROX	00NT 12 15 15	9
			V 12164/92 116/M3		0.02 58		1 400	ŭ	
			NI 12136/92 UG/M3	0.008	0.006	i H	ARITH AV 11101/91	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 4 6 7 6 8 6
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.021 0.018 0.010	0.015	a u	91		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY		PB 12128/92 UG/M3	0.31 0.33 0.50	0.37 58	BFN7 COLL	BENZ SOLUBLES TOTAL 11103/91 UG/M3		
ERIZATION OF	SITE 123	METALS	FE 12126/92 UG/M3	1.00 0.82 0.57 0.60	0.73 58				
AL CHARACTE	AREA 0175	MET	CU 12114/92 UG/M3	0.10 0.12 0.09 0.06	0.09 58		PH 12602/91 PH-UNITS	7.60 7.20 7.50 7.30	7.39 58
TERLY CHEMI	TOWN NAME DANBURY		CR 12112/92 UG/M3	0.002 0.003 0.006 0.002	0.003 58	S	SODIUM 12184/92 UG/M3		
QUAR	VEAR 1982		CD 12110/92 UG/M3	0.0008 0.0010 0.0005 0.0007	0.0008 58	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.14 0.16 0.16 0.16	0.15 58
			BE 12105/92 UG/M3	8DL 8DL 8DL 8DL	0.000 58	WA	SULFATE 12403/92 UG/M3	8.51 8.56 9.16 7.44	8.40 58
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.95 2.06 0.95 2.68	2.13 58
			QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92	0 0	0.09 3.1	;	APPROX	155	1 0
			V 12164/92 UG/M3	0.02	0.03 31		, 40,0		
			NI 12136/92 UG/M3	0.008	0.008		ARITH AV 11101/91	2 4 0 5 0 0	3 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
1982	PROJECT 01		. MN 12132/92 UG/M3		0.008		<u> </u>		
HI-VOL TSP	AGENCY F		PB 12128/92 UG/M3	0.0 8.8 8.0	31	0 0	TOTAL 11103/91 UG/M3		
Y CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	SITE 004	ALS	FE 12126/92 UG/M3	0.34 4.14	0.38 31				
AL CHARACTE	AREA RD 0220	METALS	CU 12114/92 UG/M3	0.43 0.32	0.37		PH 12602/91 PH-UNITS	8.00 6.90	7.43
ERLY CHEMIC	TOWN NAME EAST HARTFORD		CR 12112/92 UG/M3	0.005	0.005		SODIUM 12184/92 UG/M3		
QUARTERL	YEAR 1982		CD 12110/92 UG/M3	0.0015	0.0017	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.22 0.13	31
			BE 12105/92 UG/M3	BDL	31	W	SULFATE 12403/92 UG/M3	11.63	10.30 31
			AL 12101/92 UG/M3		2		NITRATE 12306/92 UG/M3	1.21	1.96 31
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.05 0.06 0.03	0.05 59		APPROX	4466	2
			V 12164/92 UG/M3	0.02 0.02 0.01	0.02 59		1 400		
			NI 12136/92 UG/M3	0.007 0.005 0.004 0.007	0.006 59	<i>(</i>	ARITH AV 11101/91	55 53 64 7	47 59
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.017 0.015 0.009 0.010	0.013 59	u u	91		
HI-VOL TSF	AGENCY		PB 12128/92 UG/M3	0.24 0.27 0.30 0.49	0.33 59	BENZ SOLIBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 008	METALS	FE 12126/92 UG/M3	0.86 0.94 0.43 0.65	0.71 59				
AL CHARACTE	AREA 0330	MET	CU 12114/92 UG/M3	0.06 0.08 0.08	0.08 59		PH 12602/91 PH-UNITS	7.70 7.20 7.40 7.10	7.34 59
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	TOWN NAME GREENWICH		CR 12112/92 UG/M3	0.003 0.003 0.001	0.002	S	SODIUM 12184/92 UG/M3		
QUAR	YEAR 1982		CD 12110/92 UG/M3	0.0009 0.0004 0.0003	0.0006 59	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.13 0.06 0.08 0.11	0.10 59
			5 7	80L 80L 80L 80L	0.000 59	WA	SULFATE 12403/92 UG/M3	9.73 6.49 9.41	8.87 59
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.34 2.57 1.56 3.20	2.67 59
			~1	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

			QUAR	QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP 1982	CAL CHARACTE	ERIZATION OF	= HI-VOL TSP	1982			
			VEAR 1982	TOWN NAME HADDAM	AREA 0380	SITE 002	AGENCY	PROJECT 02			
					ME	METALS					
QUARTER	AL 12101/92 UG/M3	BE 12105/92 UG/M3	CD 12110/92 UG/M3	CR 12112/92 UG/M3	CU 12114/92 UG/M3	FE 12126/92 UG/M3	PB 12128/92 UG/M3	MN 12132/92 UG/M3	NI 12136/92 UG/M3	V 12164/92 UG/M3	1216
FIRST SECOND THIRD FOURTH		80L 80L 80L 80L	0.0007 0.0009 0.0003 0.0005	0.001 0.002 BDL 0.001	0.08 0.08 0.12 0.09	0.37 0.25 0.13 0.18	0.12 0.12 0.15	0.00 0.008 0.005 0.005	0.006 0.004 0.002 0.005	0.01 0.01 0.02	0000
YEAR AVG COUNT		0.000	0.0006	0.001	0.09 57	0.23 57	0.14	0.007	0.004	0.01 57	o""
		WA	WATER SOLUBLES	S			BENZ SOLUBLES	BLES	TSP		
QUARTER	NITRATE 12306/92 UG/M3	SULFATE 12403/92 UG/M3	AMMONIUM 12301/91 UG/M3	SODIUM 12184/92 UG/M3	PH 12602/91 PH-UNITS		TOTAL 11103/91 UG/M3	91	ARITH AV 11101/91 UG/M3	, , , , ,	APPROX SAMPLE COUNT
FIRST SECOND THIRD FOURTH	1.73 2.01 1.03 1.90	7.52 10.22 6.95 7.97	0.11 0.06 0.07 0.05		7.60 7.20 7.50 7.10				32 31 29 25		5 5 5 5 5 5 7
YEAR AVG COUNT	1.66 57	8.06 57	0.07		7.36 57				29 57		?

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.07	0.07	0.07			APPROX SAMPLE COLINT	15 15	12	!
			V 12164/92 UG/M3		0.04	0.04			¥85	3		
			NI 12136/92 UG/M3	0.017	0.010	0.011		TSP	ARITH AV 11101/91 UG/M3	69 58	49	59
1982	PROJECT 01		MN 12132/92 UG/M3		0.010	0.016		ILES	=			
HI-VOL TSP	AGENCY		PB 12128/92 UG/M3	0.39	0.55	0.42		BENZ SOLUBLES	TOTAL 11103/91 UG/M3			
SIZATION OF	SITE 003	ILS	FE 12126/92 UG/M3	1.15 0.89	0.62	0.89						
AL CHARACTE	AREA 0420	METALS	CU. 12114/92 UG/M3	0.20	0.10	0.15			PH 12602/91 PH-UNITS	7.50 7.10	7.00	7.20
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	TOWN NAME HARTFORD		CR 12112/92 UG/M3	0.004	0.004	0.004			SODIUM 12184/92 UG/M3			
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0013	0.0008	0.0010		WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.16	0.11	0.10
			BE 12105/92 UG/M3	BDL	BDL	0.000	j	MA	SULFATE 12403/92 UG/M3	9.11	90.6	10.00
			AL 12101/92 UG/M3						NITRATE 12306/92 UG/M3	3.79 3.58	1.90	3.09 41
			QUARTER	FIRST SECOND THIRD	FOURTH	YEAR AVG COUNT			QUARTER	FIRST SECOND THIRD	FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.07 0.04 0.05 0.07	0.06 58		APPROX SAMPLE COUNT	<u> </u>	
			V 12164/92 UG/M3	0.00 0.00 0.03 0.03	0.02		i «NO		
			NI 12136/92 UG/M3	0.014 0.004 0.005 0.009	0.008 58	TSP	ARITH AV 11101/91 UG/M3	50 4 4 4 4 5 4 3 4 4 3 4 4 3 4 3 4 4 3 4 4 4 4	54 58 8
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.015 0.012 0.011	0.012 58	BLES			
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY F		PB 12128/92 UG/M3	0.39 0.25 0.36 0.47	0.37 58	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 013	METALS	FE 12126/92 UG/M3	0.70 0.53 0.59 0.47	0.57 58				
AL CHARACTE	AREA 0420	MET	CU 12114/92 UG/M3	0.07 0.07 0.11	0.07 58		PH 12602/91 PH-UNITS	7.70 7.40 7.40 7.50	7.50 58
ERLY CHEMIC	TOWN NAME HARTFORD		CR 12112/92 UG/M3	0.005 0.006 0.002 0.007	0.005	S	SODIUM 12184/92 UG/M3		
QUART	YEAR 1982		CD 12110/92 UG/M3	0.0023 0.0007 0.0014 0.0013	0.0014	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.16 0.12 0.09 0.13	0.13 58
			BE 12105/92 UG/M3	80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	9.67 9.38 7.92 8.28	8.84 58
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.98 3.84 1.49	2.74 58
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.00	0.05		APPROX SAMPLE COUNT	<u>ក ក ក ក</u>	
			V 12164/92 UG/M3	0.04 0.01 0.03	0.02	'	2070		
			NI 12136/92 UG/M3	0.013 0.004 0.005 0.008	09.007	TSP	ARITH AV 11101/91 UG/M3	4 4 8 4 8 8 8 0 0	60
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.014 0.013 0.008	0.011	BLES	- 0		
HI-VOL TSP	AGENCY		PB 12128/92 UG/M3	0.38 0.28 0.39	0.38 60	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 014		FE 12126/92 UG/M3	0.71 0.61 0.42 0.49	0.56 60				
AL CHARACTE	AREA 0420	METALS	CU 12114/92 UG/M3	0.05 0.09 0.13 0.13	0.10 60		PH 12602/91 PH-UNITS	7.40 7.10 7.20 7.40	7.27 60
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	TOWN NAME Hartford		CR 12112/92 UG/M3	0.002 0.002 0.001 0.004	0.002	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0010 0.0012 0.0010 0.0009	0.0010	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.16 0.12 0.13	0.14
			BE 12105/92 UG/M3	80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	7.35 11.55 8.20 6.30	8.35 60
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.20 2.70 1.42 2.53	2.46 60
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982
VEAR TOWN NAME AREA SITE AGENCY PROJECT
1982 LITCHFIELD 0478 001 F
03

	ZN 12167/92 UG/M3	0.03 0.02 0.01	0.02		APPROX SAMPLE COUNT	21 13 8 13 8	
	V 12164/92 UG/M3	0.02	0.01	'	400		
			0.002	TSP	ARITH AV 11101/91 UG/M3	30 28 28 38	28 48
			0.006	BLES	91		
	PB 12128/92 UG/M3	0.09 0.11 0.11	0.11	BENZ SOLU	TOTAL 11103/ UG/M3		
ALS	FE 12126/92 UG/M3	0.42 0.22 0.06 0.21	0.22 48				
MET	CU 12114/92 UG/M3	0.10 0.10 0.16 0.13	0.12		PH 12602/91 PH-UNITS	8.30 7.90 7.10 7.60	7.70
	CR 12112/92 UG/M3	0.001 0.001 0.002	0.001	٠.	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0007 0.0005 0.0002 0.0006	0.0005 48	TER SOLUBLE	AMMONIUM 12301/91 UG/M3	0.09 0.05 0.05	0.06 48
	BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	5.98 7.15 7.03 7.50	6.88 48
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.93 2.21 1.15 0.96	1.85 48
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT
	METALS	AL BE CD CR CU FE PB MN NI V 12101/92 12110/92 121112/92 12114/92 12126/92 12128/92 12132/92 12136/92 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3 UG/M3	AL BE CD CR CU FE PB MN NI V 12101/92 12105/92 12110/92 12112/92 12126/92 12128/92 12132/92 12136/92 12164/92 UG/M3 BDL 0.0007 0.001 0.10 0.22 0.09 0.007 0.001 BDL 0.0006 0.001 0.16 0.06 0.11 0.004 BDL 0.01 BDL 0.0006 0.002 0.013 0.21 0.15 0.004 0.005	AL BE CD CR CU FE PB MN NI V V 12101/92 12110/92 12112/92 12128/92 12132/92 12136/92 12164/92 12 164/92 12	AL BE CD CR CU FFE PB MN NI V V V V V V V V V V V V V V V V V V	ALCOLOGIC ALCO	A

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.00 0.00 40.00 0.00	0.04		APPROX SAMPLE	4 to to a	2
			V 12164/92 UG/M3	0.03	0.02 60		IKNC	•	
			NI 12136/92 UG/M3	0.009 0.003 0.003	0.005	Q.F.	ARITH AV 11101/91 UG/M3	9 4 8 8 6 4 4 1 E	8 80 90
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.014 0.010 0.009 0.006	0.010	3LES			
HI-VOL TSP	AGENCY		PB 12128/92 UG/M3	0.23 0.17 0.26 0.34	0.25 60	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 001	ALS	FE 12126/92 UG/M3	0.66 0.40 0.31	0.41				
AL CHARACTE	AREA 0510	METALS	CU 12114/92 UG/M3	0.07 0.05 0.08	0.06		PH 12602/91 PH-UNITS	7.80 7.60 7.00 8.30	7.68
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	TOWN NAME MANCHESTER		CR 12112/92 UG/M3	0.002 0.001 0.001 0.002	0.001	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0008 0.0012 0.0004 0.0006	0.0008	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.10 0.12 0.13 0.14	0.12 60
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	W	SULFATE 12403/92 UG/M3	9.23 10.07 8.10 8.12	8.86 60
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.82 3.65 1.56 1.44	2.58 60
			QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982

	ZN 12167/92 UG/M3	0.40 0.65 0.32	0.40 58		APPROX SAMPLE COUNT	<u> </u>	
	V 12164/92 13 UG/M3	0.04 0.02 0.01	0.03 58		APP SAM COU		
	NI 12136/92 1 UG/M3	0.016 0.007 0.006 0.014	0.011	TSP	ARITH AV 11101/91 UG/M3	4 4 4 5 5 5 4 4 4 5 5 5 5 5 5 5 5 5 5 5	47
PROJECT 01	MN 12132/92 UG/M3	0.021 0.015 0.010 0.008	0.013 58	<u>sles</u>	-		
AGENCV F	PB 12128/92 UG/M3	0.45 0.27 0.40 0.65	0.44 58	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
SITE 002	FE 126/92 G/M3	1.27 0.65 0.48 0.41	0.68 58				
AREA 0540	METALS CU 12114/92 12 UG/M3 U	0.11 0.10 0.06	0.10 58		PH 12602/91 PH-UNITS	7.60 7.50 7.00 7.90	7.50 58
TOWN NAME Meriden	CR 12112/92 UG/M3	0.003 0.002 0.002	0.003 58	S	SODIUM 12184/92 UG/M3		
YEAR 1982	CD 12110/92 UG/M3	0.0016 0.0007 0.0009 0.0014	0.0012 58	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.15	0.12 58
	BE 12105/92 UG/M3	80L 80L 80L	0.000 58	M	SULFATE 12403/92 UG/M3	11.84 10.85 7.37 5.16	8.70 58
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.13 2.42 1.53 2.43	2.35 58
	QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.12	0.10 57		APPROX SAMPLE COUNT	<u> </u>	
			V 12164/92 UG/M3	0.03 0.02 0.03	0.02 57		, 40,0		
			NI 12136/92 UG/M3	0.012 0.006 0.005 0.011	0.008	TSP	ARITH AV 11101/91 UG/M3	4 4 8 3 3 5 5 4 6	41
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.013 0.014 0.011	0.011	BLES	91		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY		PB 12128/92 UG/M3	0.30 0.27 0.40 0.46	0.36 57	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 008	ALS	FE 12126/92 UG/M3	0.60 0.54 0.35	0.48				
AL CHARACTE	AREA 0540	ME	CU 12114/92 UG/M3	0.00 0.13 0.15 1.0	0.13 57		PH 12602/91 PH-UNITS	7.80 7.50 7.00 8.10	7.58 57
ERLY CHEMIC	TOWN NAME Meriden		CR 12112/92 UG/M3	0.002 0.002 0.001 0.003	0.002	S	SODIUM 12184/92 UG/M3		
QUART	YEAR 1982		CD 12110/92 UG/M3	0.0011 0.0010 0.0007 0.0009	0.0009 57	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.10 0.12 0.13	0.12
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	10.19 10.26 6.00 8.04	8.61
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.44 2.42 1.40 2.75	2.23 57
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0000 0000 0448	0.05 56		APPROX SAMPLE COUNT	តិ ខ្ពុក្	
			V 12164/92 UG/M3	0.03 0.01 0.02	0.02 56	'	40,0		
			NI 12136/92 UG/M3	0.009 0.003 0.005	0.006	TSP	ARITH AV 11101/91 UG/M3	3 4 6 5 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6	42 56
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.020 0.014 0.012 0.010	0.014 56	BLES	01		
HI-VOL TSP	AGENCY F		PB 12128/92 UG/M3	0.37 0.24 0.36 0.43	0.35 56	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 003		FE 12126/92 UG/M3	0.78 0.48 0.38 0.38	0.51 56				
AL CHARACTE	AREA 0570	METALS	CU 12114/92 UG/M3	0.07 0.05 0.17 0.11	0.10 56		PH 12602/91 PH-UNITS	7.80 7.60 7.10 8.50	7.78 56
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	TOWN NAME MIDDLETOWN		CR 12112/92 UG/M3	0.003 0.001 0.003	0.002	80	SODIUM 12184/92 UG/M3		
QUARTI	VEAR 1982		CD 12110/92 UG/M3	0.0019 0.0005 0.0007 0.0010	0.0010	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.11 0.11 0.12 0.15	0.12 56
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000 56	. WA	SULFATE 12403/92 UG/M3	9.48 9.65 6.60 7.75	8.39 56
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.21 2.19 1.85 2.21	2.12 56
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.07 0.05 0.04 0.06	0.06	!	APPROX SAMPLE COUNT	ह <u>ा</u> हा 9	
			V 12164/92 UG/M3	0.06 0.03 0.04	0.04	·	7070		
			NI 12136/92 UG/M3	0.027 0.010 0.009 0.014	0.015	TSP	ARITH AV 11101/91 UG/M3	94448 9408	43 61
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.016 0.010 0.008 0.007	0.010	BLES	16		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY F		PB 12128/92 UG/M3	0.32 0.25 0.34 0.40	0.33 61	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 002	METALS	FE 12126/92 UG/M3	0.79 0.43 0.35 0.37	0.48				
AL CHARACTE	AREA 0590	MET	CU 12114/92 UG/M3	0.05 0.06 0.08	0.06		PH 12602/91 PH-UNITS	7.60 7.60 7.20 8.60	7.76 61
ERLY CHEMIC	TOWN NAME Milford		CR 12112/92 UG/M3	0.011 0.001 0.002 0.003	0.004	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0057 0.0014 0.0021 0.0029	0.0030	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.13 0.13 0.14 1.0	0.14
		8	BE 12105/92 UG/M3	80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	9.60 12.49 8.61 6.71	9.31
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.50 2.40 1.47 2.14	2.13
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.15 0.09 0.12	59		APPROX SAMPLE COUNT	4 G 4 0	
			V 12164/92 UG/M3	0.05 0.03 0.03	0.03		, 4 00		
	: 1		NI 12136/92 UG/M3	0.015 0.007 0.007 0.009	0.009	TSP	ARITH AV 11101/91 UG/M3	8 8 8 8 8 8 8 8	മാ
1982	PROJECT 01		MN 12132/92 UG/M3	0.036 0.021 0.016 0.010	0.020	BLES	16		
HI-VOL TSP	AGENCY F		PB 12128/92 UG/M3	0.72 0.41 0.41	0.49 59	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 001	METALS	FE 12126/92 UG/M3	1.89 0.89 0.47 0.44	59				
AL CHARACTE	AREA 0660	MET	CU 12114/92 UG/M3	0.36 0.42 0.17 0.10	0.26 59		PH 12602/91 PH-UNITS	7.40 7.60 7.20 8.80	7.78 59
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	TOWN NAME NAUGATUCK		CR 12112/92 UG/M3	0.010 0.002 0.002 0.004	0.004	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0036 0.0030 0.0010 0.0028	0.0026	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0000 1000 1000 1000 1000 1000 1000 100	0.14 59
			BE 12105/92 UG/M3	80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	12.37 11.69 5.37 10.64	10.07 59
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.63 3.14 1.21 2.69	2.68 59
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.00 0.00 0.00 0.00	0.05 60		APPROX SAMPLE COUNT	<u>ស </u>	
			V 12164/92 UG/M3	0.03 0.02 0.03	0.02	•			
			NI 12136/92 UG/M3	0.011 0.006 0.004 0.007	09.007	TSP	ARITH AV 11101/91 UG/M3	0488 0486	60
1982	PROJECT 01		MN 12132/92 UG/M3	0.016 0.012 0.009 0.007	0.011	BLES	.		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY		PB 12128/92 UG/M3	0.32 0.32 0.32 34	0.30	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 007	METALS	FE 12126/92 UG/M3	0.39 0.39 32	0.51				
AL CHARACTE	AREA 0680	MET	CU 12114/92 UG/M3	0.00 0.10 0.11	0.10 60		PH 12602/91 PH-UNITS	8.60 8.20 7.20 8.80	8.20 60
ERLY CHEMIC	TOWN NAME NEW BRITAIN		CR 12112/92 UG/M3	0.002 0.001 0.001	0.001	S	SODIUM 12184/92 UG/M3		
QUART	YEAR 1982		CD 12110/92 UG/M3	0.0015 0.0006 0.0007 0.0007	0000°0 09	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	00.013	0.13 60
			BE 12105/92 UG/M3	80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	10.89 9.40 8.68 9.73	9.67 60
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.49 3.39 1.64 2.21	2.43 60
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

	ZN 12167/92 UG/M3	0.06 0.05 0.05	0.05		APPROX SAMPLE COUNT	4 11 1 1 0	
	V 12164/92 UG/M3	0.03 0.01 0.02	0.02		& Ø Ø		
	NI 12136/92 UG/M3	0.011 0.003 0.005 0.006	0.006	TSP	ARITH AV 11101/91 UG/M3	0 4 4 & 0 4 0 &	42
PROJECT 01	MN 12132/92 UG/M3	0.014 0.012 0.006	0.011	BLES	.		
AGENCY	PB 12128/92 UG/M3	0.33 0.22 0.34 0.40	0.32	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
SITE 008	FE 12126/92 UG/M3	0.72 0.53 0.72 0.32	0.57				
AREA 0680	CU 12114/92 UG/M3	0.25 0.12 0.12 0.10	0.14		PH 12602/91 PH-UNITS	8.60 8.20 7.50 9.00	8.33 60
TOWN NAME NEW BRITAIN	CR 12112/92 UG/M3	0.002 0.001 0.003	0.002	S	SODIUM 12184/92 UG/M3		
VEAR 1982	CD 12110/92 UG/M3	0.0012 0.0009 0.0013 0.0006	0.0010	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.11 0.12 0.15	0.13 60
	BE 12105/92 UG/M3	80L 80L 80L	00000	7M	SULFATE 12403/92 UG/M3	11.65 8.91 7.81 9.22	9.36 60
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.80 3.76 2.10 2.61	3.05 60
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.00 0.05 0.05	0.05		APPROX SAMPLE COUNT	0 4 <u>4 4</u>	
			V 12164/92 UG/M3	0.02 0.01 0.01	0.02	•	70,0	,	
			NI 12136/92 UG/M3	0.009 0.003 0.005	0.006	TSP	ARITH AV 11101/91 UG/M3	3 4 5 5 1 3 4 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	57
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.012 0.012 0.010	0.010	BLES			
HI-VOL TSP	AGENCY		PB 12128/92 UG/M3	0.20 0.31 0.30	0.28	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	SITE 009	METALS	FE 12126/92 UG/M3	0.61 0.47 0.28	0.45 57			-	
AL CHARACTE	AREA 0680	MET	CU 12114/92 UG/M3	0.14 0.24 0.36 0.13	0.22 57		PH 12602/91 PH-UNITS	8.60 8.10 6.00	7.96 57
ERLY CHEMIC	TOWN NAME New Britain		CR 12112/92 UG/M3	0.003 0.002 0.003	0.003	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0013 0.0006 0.0007 0.0006	0.0008	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.13 0.13 0.14	0.13
			BE 12105/92 UG/M3	80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	10.92 10.94 7.79 9.70	9.86 57
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.51 2.39 1.34 2.18	2.11
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982

	ZN 12167/92 UG/M3	0.00 0.00 0.00 0.00	0.07		30X T E	10.01.01	
	V 12164/92 12 UG/M3 L	0.00 0.00 0.02 0.04	0.03 50	,	APPROX SAMPLE COUNT	5227	
	NI 12136/92 UG/M3	0.020 0.017 0.008 0.013	0.015 50	TSP	ARITH AV 11101/91 UG/M3	0 8 8 5 0 8 8 2	52
PROJECT 01	MN 12132/92 UG/M3	0.020 0.016 0.013 0.011	0.015 50	BLES	-0		
AGENCY F	PB 12128/92 UG/M3	0.53 0.40 0.58	0.53 50	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
SITE 002 METALS	FE 12126/92 UG/M3	1.10 0.79 0.70	0.86 50				
AREA 0700 MET	CU 12114/92 UG/M3	0.08	0.14 50		PH 12602/9! PH-UNITS	7.60 7.60 7.50 8.50	7.77 50
TOWN NAME NEW HAVEN	CR 12112/92 UG/M3	0.004 0.002 0.002 0.005	0.003	S	SODIUM 12184/92 UG/M3		
VEAR 1982	CD 12110/92 UG/M3	0.0016 0.0011 0.0011 0.0007	0.0010	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.00 0.13 0.13	0.13 50
	BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	M	SULFATE 12403/92 UG/M3	9.78 11.49 7.70 6.92	8.97 50
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.69 1.80 1.90 3.23	2.41
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

TABLE 9, CONTINUED

V 12164/92 UG/M3 $\begin{array}{c} 0.07 \\ 0.03 \\ 0.03 \\ 0.03 \end{array}$ 0.04 56 ARITH AV 11101/91 UG/M3 NI 12136/92 UG/M3 0.024 0.008 0.007 0.010 TSP 0.012 PROJECT 01 MN 12132/92 UG/M3 0.015 0.014 0.011 0.007 0.012 QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982 BENZ SOLUBLES TOTAL 11103/91 UG/M3 PB 12128/92 UG/M3 AGENCY F $\begin{array}{c} 0.40 \\ 0.28 \\ 0.46 \\ 0.40 \end{array}$ FE 12126/92 UG/M3 0.81 0.65 0.57 0.42 0.60 SITE 013 METALS CU 12114/92 UG/M3 PH 12602/91 PH-UNITS AREA 0700 7.50 7.60 7.30 8.80 0.06 0.06 0.15 0.10 0.09 CR 12112/92 UG/M3 SODIUM 12184/92 UG/M3 TOWN NAME NEW HAVEN 0.003 0.002 0.001 0.003 0.002 WATER SOLUBLES CD 12110/92 UG/M3 AMMONIUM 12301/91 UG/M3 0.0016 0.0009 0.0009 0.0005 0.0010 0.10 0.14 0.16 0.17 **YEAR** 1982 BE 12105/92 UG/M3 SULFATE 12403/92 UG/M3 0.000 9.37 9.15 9.27 9.75 NITRATE 12306/92 UG/M3 AL 12101/92 UG/M3

ZN 12167/92 UG/M3

0.08 0.05 0.05

0.06 56

APPROX SAMPLE COUNT

5 4 5 6

7.85 56

9.40 56

2.67 56

YEAR AVG COUNT

3.02 2.63 2.94 2.94

FIRST SECOND THIRD FOURTH

QUARTER

YEAR AVG COUNT

FIRST SECOND THIRD FOURTH

QUARTER

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.00 0.00 0.09 0.09	0.08	·	APPROX SAMPLE COUNT	0 4 C E	
			V 12164/92 UG/M3	0.05 0.03 0.04	0.03 57	'			
			NI 12136/92 UG/M3	0.018 0.008 0.006	0.011	TSP	ARITH AV 11101/91 UG/M3	8 4 8 8 0 8 4 4 8 8 4 8 8 9 8 9 8 9 9 9 9 9 9 9 9	47 57
1982	PROJECT 01		MN 12132/92 UG/M3	0.016 0.015 0.009	0.012	BLES	. o		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY F		PB 12128/92 UG/M3	0.27 0.25 0.37 0.36	0.31 57	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 001	METALS	FE 12126/92 UG/M3	0.73 0.65 0.48	0.56 57	,			
AL CHARACTE	AREA 0820	ME	CU 12114/92 UG/M3	0.08 0.12 0.20 0.16	0.14		PH 12602/91 PH-UNITS	8.40 8.20 8.80	8.34 57
ERLY CHEMIC	TOWN NAME NORWALK		CR 12112/92 UG/M3	0.002 0.002 0.003	0.002	S	SODIUM 12184/92 UG/M3		
QUART	YEAR 1982		CD 12110/92 UG/M3	0.0013 0.0012 0.0009 0.0007	0.0010	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.15 0.13 0.13	0.13 57
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	10.66 10.36 9.49 9.18	9.94
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.31 2.22 1.55 2.23	2.07
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.09 0.07 0.06	0.07		APPROX SAMPLE COUNT	62229	
			V 12164/92 UG/M3	0.02 0.02 0.04	0.03 55	·			
			NI 12136/92 UG/M3	0.015 0.005 0.006 0.011	0.010	TSP	ARITH AV 11101/91 UG/M3	74 51 43 43	១១ ១
1982	PROJECT 01		MN 12132/92 UG/M3	0.022 0.016 0.010 0.010	0.015 55	BLES	0		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCV F		PB 12128/92 UG/M3	0.38 0.31 0.48	0.40	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 005	METALS	FE 12126/92 UG/M3	1.10 0.74 0.51 0.55	0.73 55				
AL CHARACTE	AREA 0820	MET	CU 12114/92 UG/M3	0.08 0.13 0.23 0.11	0.13 55		PH 12602/91 PH-UNITS	7.46 7.90 8.20 8.70	8.08 55
ERLY CHEMIC	TOWN NAME NORWALK		CR 12112/92 UG/M3	0.003 0.001 0.003	0.002	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0016 0.0008 0.0007 0.0007	0.0010	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.13 0.13 0.14	0.14 55
			BE 12105/92 UG/M3	BDL BDL BDL	0.000	WA	SULFATE 12403/92 UG/M3	9.33 9.79 9.27	9.56 55
			AL 12101/92 UG/M3			77.7 1000017	NITRATE 12306/92 UG/M3	2.92 2.78 2.02 2.93	2.70 55
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

	징	WARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	CHARACTE	RIZATION OF	HI-VOL TSP,	1982		
	VEAR 1982	TOWN NAME NORWALK	AREA 0820	SITE 012	AGENCY F	PROJECT 01		
			MET	METALS				
BE 12105/92 UG/M3	CD 12110/9 UG/M3	CR 2 12112/92 1 UG/M3	CU 2114/92 UG/M3	FE 12126/92 UG/M3	PB 12128/92 UG/M3	MN 12132/92 UG/M3	NI 12136/92 UG/M3	V 12164/92 UG/M3
80L 80L 80L	0.0016 0.0009 0.0006 0.0008		0.07 0.06 0.06 0.05	0.94 0.68 0.52 0.49	0000 00 880 800 800 800	0.019 0.016 0.009	0.016 0.005 0.005	0.04 0.02 0.01

AL 12101/92 UG/M3

QUARTER

ZN 12167/92 UG/M3

0.07	0.05	0.05		1	APPROX SAMPLE	COUNT	ř.	ب ا	> 5	9 1	
0.04	0.03	0.02									
0.016	0.006	0.008	ļ	TSP	ARITH AV 11101/91	UG/M3	09	47	4	4.	60 60
0.010	0.008	0.013		UBLES	L /91	ღ					
0.30	0.0 0.4 0.6	0.37	!	BENZ SOL	TOTAL 11103/91	₩/50					
0.94	0.32	99.0									
0.07	0.02	0.06			PH 12602/91	PH-UNITS	7.60	8.00	8.60	8.70	8.23 60
0.003	00.00	0.002	·		SODIUM 12184/92	UG/M3					
0.0016	0.0008	0.0010 60	00 to 100	I EK SOLUBLE	AMMONIUM 12301/91	UG/M3	0.15	0.13	0.12	0.13	0.13 60
80L 80L	80L	0.000		d sa	SULFATE 12403/92	UG/M3	9.55	12.57	9.57	6.95	9.62 60
					NITRATE 12306/92	UG/M3	2.34	2.49	2.13	2.30	2.32 60
FIRST SECOND THIRD	FOURTH	VEAR AVG			QUARTER		FIRST	SECOND	THIRD	FOURTH	YEAR AVG

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.04	0.03 57		APPROX SAMPLE COUNT	07 T C C	
			V 12164/92 UG/M3	0.03 0.02 0.03	0.02	'	40,0		
			NI 12136/92 UG/M3	0.010 0.007 0.008	0.008	TSP	ARITH AV 11101/91 UG/M3	57 45 37 39	45
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.012 0.010 0.007 0.005	0.009	BLES	. n		
Y CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY F		PB 12128/92 UG/M3	0.25 0.21 0.25 0.31	0.25 57	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 001	METALS	FE 12126/92 UG/M3	0.63 0.50 0.46 0.29	0.48				
AL CHARACTE	AREA 0840	MET	CU 12114/92 UG/M3	0.03	0.06		PH 12602/91 PH-UNITS	8.30 8.30 8.80	8.44
ERLY CHEMIC	TOWN NAME NORWICH		CR 12112/92 UG/M3	0.002	0.002	S	SODIUM 12184/92 UG/M3		
QUARTERL	VEAR 1982		CD 12110/92 UG/M3	0.0008 0.0006 0.0004 0.0005	0.0006	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.09 0.12 0.13 0.13	0.12 57
			BE 12105/92 UG/M3	BDL BDL BDL BDL	0.000	WA	SULFATE 12403/92 UG/M3	11.38 10.19 9.20 8.95	9.96 57
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.14 2.34 2.40	2.47
			QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982

	ZN 12167/92	0.00 0.00 0.00	0.06 58		APPROX SAMPLE COUNT	4446	.
	V 12164/92 HG/M3		0.03 58		1 4000		
	NI 12136/92 UG/M3	0.015 0.008 0.007 0.010	0.010 58	TSP	ARITH AV 11101/91 UG/M3	64 74 75 75	28
PROJECT 01	MN 12132/92 UG/M3	0.020 0.025 0.012	0.017 58	BLES	16.		
AGENCY F	PB 12128/92 UG/M3		0.37 58	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
SITE 001 METALS	FE 12126/92 UG/M3	0.94 1.26 0.66 0.50	0.85 58				
AREA 1080 MET	CU 12114/92 UG/M3	0.16 0.25 0.08	0.18 58		PH 12602/91 PH-UNITS	8.80 8.80 8.40 8.80	8.70 58
TOWN NAME STAMFORD	CR 12112/92 UG/M3	0.003 0.003 0.002	0.003 58	S	SODIUM 12184/92 UG/M3		
YEAR 1982	CD 12110/92 UG/M3	0.0014 0.0010 0.0007 0.0011	0.0011	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.13 0.15 0.15	0.12 58
	BE 12105/92 UG/M3	80L 80L 80L	0.000 58	WA	SULFATE 12403/92 UG/M3	11.58 12.41 9.69 9.75	10.82 58
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.13 2.86 3.40	3.10 58
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982
VEAR TOWN NAME AREA SITE AGENCY PROJECT
1982 STAMFORD 1080 007 F

	7/92 #3	0.00 0.10 0.09	6 C				
	12167 UG/A	0000	0.0		APPROX SAMPLE COUNT	41 31 61	
	V 12164/92 UG/M3	0.02 0.02 0.03	0.03				
	NI 12136/92 UG/M3	0.013 0.008 0.009	09 09	TSP	ARITH AV 11101/91 UG/M3	50 50 44 44	47
	MN 12132/92 UG/M3	0.013 0.015 0.012 0.009	0.012	JBLES	791 3		
	PB 12128/92 UG/M3	0.23 0.23 0.32 0.35	0.28 60	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
METALS	FE 12126/92 UG/M3	0.58 0.72 0.53 0.47	09				
ME	CU 12114/92 UG/M3	0.13 0.13 0.17	0.13 60		PH 12602/91 PH-UNITS	8.80 8.20 8.30 8.80	8.52 60
	CR 12112/92 UG/M3	0000	0.002	S	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.0017 0.0017 0.0015 0.0017	0.0017	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.12 0.13 0.11	0.13 60
	BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	M	SULFATE 12403/92 UG/M3	10.39 11.40 8.02 11.05	10.23 60
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.30 2.75 1.82 2.35	2.54 60
	QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982

		ZN 12167/92 UG/M3	0.00 0.01 0.09	0.08 57	*		APPROX SAMPLE COUNT	<u> </u>	
				0.02 57		1	₹ Ø Ō		
		NI 12136/92 UG/M3	0.012 0.007 0.007 0.009	0.009		TSP	ARITH AV 11101/91 UG/M3	5 5 1 5 1 5 5 7 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8	47 57
PROJECT 01		MN 12132/92 UG/M3	0.013 0.014 0.008	0.011		BLES	0		
AGENCY		PB 12128/92 UG/M3	0.29 0.27 0.35	0.34		BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
SITE 021	METALS	FE 12126/92 UG/M3	0.63 0.50 0.48	0.55					
AREA 1080	MET	CU 12114/92 UG/M3	0.16 0.22 0.18 0.07	0.16			PH 12602/91 PH-UNITS	8.70 8.40 8.80	8.65 57
TOWN NAME Stamford		2 ₁	0000	0.003		S	SODIUM 12184/92 UG/M3		
VEAR 1982		CD 12110/92 UG/M3	0.0015 0.0013 0.0010	0.0013		WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	00.12	0.11
		BE 12105/92 UG/M3	108 80 80 80 80	0.000		WA	SULFATE 12403/92 UG/M3	10.58 10.61 10.00 9.69	10.20 57
		AL 12101/92 UG/M3					NITRATE 12306/92 UG/M3	2.87 3.93 2.69 3.12	3.15
		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

TABLE 9, CONTINUED

				V 12164/92 UG/M3	0.02	0.03 59					
				NI 12136/92 UG/M3	0.016 0.009 0.009 0.010	0.011		TSP	ARITH AV 11101/91 UG/M3	70 53 37 40	94 00 00
, 1982	PROJECT 01	•		MN 12132/92 UG/M3	0.019 0.020 0.010 0.007	0.014		BLES	-		
HI-VOL TSP	AGENCY			PB 12128/92 UG/M3	0.37 0.35 0.47 0.49	0.42 59		BENZ SOLUBLES	TOTAL 11103/91 UG/M3	•	
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	SITE 005		METALS	FE 12126/92 UG/M3	0.98 0.42 0.36	0.55 59					
AL CHARACTE	AREA 1110		Σ	CU 12114/92 UG/M3	0.08 0.12 0.12 0.08	0.10	# () . 		PH 12602/91 PH-UNITS	8.80 8.40 8.70	8.58 59
ERLY CHEMIC	TOWN NAME STRATFORD			CR 12112/92 UG/M3	0.003 0.005 0.003	0.003		S	SODIUM 12184/92 UG/M3	\$ }	č. Š
QUART	YEAR 1982			CD 12110/92 UG/M3	0.0047 0.0040 0.0011 0.0027	0.0031		WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	000.13	0.13 59
				BE 12105/92 UG/M3	80L 80L 80L 80L	0.000		/M	SULFATE 12403/92 UG/M3	11.14 11.12 9.92 9.89	10.49 59
				AL 12101/92 UG/M3					NITRATE 12306/92 UG/M3	3.12 2.28 1.13 2.94	2.37 59
				QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT			QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

0.08 0.08 0.06

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0000 0000 0000	0.05		APPROX SAMPLE COUNT	r r 4 0	
			V 12164/92 UG/M3	0.02 0.01 0.01	0.01				
			NI 12136/92 UG/M3	0.008 0.003 0.003	0.005	d⊗ P	ARITH AV 11101/91 UG/M3	58 78 78 80 40	80 90
1982	PROJECT 01		MN 12132/92 UG/M3	0.022 0.016 0.011	0.015	3LES	16		
HI-VOL TSP	AGENCY		PB 12128/92 UG/M3	0.38 0.28 0.36 0.51	0.38 60	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 123	ALS	12126/92 UG/M3	1.32 0.80 0.51 0.54	0.79				
AL CHARACTE	AREA 1160	METALS	CU 12114/92 UG/M3	0.00 0.28 0.21	0.16		PH 12602/91 PH-UNITS	8.60 8.60 8.60	8.65 60
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	TOWN NAME TORRINGTON		CR 12112/92 UG/M3	0.002	0.002	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0009 0.0006 0.0005 0.0005	0.0007	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.09	60
			BE 12105/92 UG/M3	800 800 108 108	0.000	WA	SULFATE 12403/92 UG/M3	10.91 12.03 8.37 8.48	9.95
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.27 1.89 1.12 1.33	1.66 60
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT

TABLE 9, CONTINUED

			ZN 12167/92 UG/M3	0.03 0.03 0.02	0.02 59		APPROX SAMPLE COUNT	<u> ក ក ក</u>	
			V 12164/92 UG/M3	0.00.0	0.01	. '	20,0		
			NI 12136/92 UG/M3	0.007 0.002 0.003	0.004	TSP	ARITH AV 11101/91 UG/M3	22 29 27 20	22 42 43 44
, 1982	PROJECT 03		MN 12132/92 UG/M3	0.010 0.005 0.004 0.010	0.007	BLES			
Y CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY		PB 12128/92 UG/M3	0.07 0.06 0.09 0.08	0.08	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 001	METALS	FE 12126/92 UG/M3	0.17 0.12 0.02	59				
AL CHARACTE	AREA 1205	MET	CU 12114/92 UG/M3	0.07 0.11 0.14 0.06	0.10 59		PH 12602/91 PH-UNITS	8.80 8.50 9.10	8.74 59
ERLY CHEMIC	TOWN NAME VOLUNTOWN		CR 12112/92 UG/M3	0.002 BDL BDL 0.003	0.002	S	SODIUM 12184/92 UG/M3		
QUARTERL	YEAR 1982		CD 12110/92 UG/M3	0.0007 0.0005 0.0004 0.0004	0.0005 59	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.09 0.04 0.03	0.05 59
			BE 12105/92 UG/M3	BDL BDL BDL BDL	0.000	WA	SULFATE 12403/92 UG/M3	9.13 5.07 4.33 9.45	7.10 59
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.16 1.95 1.17 1.77	1.76 59
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982

		ZN 12167/92 UG/M3	0.07 0.05 0.06	0.06 59		APPROX SAMPLE COUNT	<u> </u>	
		V 12164/92 UG/M3	0.03	0.02 59	ı	∢ W O		
				0.008 59	TSP	ARITH AV 11101/91 UG/M3	39 39 37	4 R 8 Q
PROJECT 01		MN 12132/92 UG/M3	0.020 0.015 0.009 0.007	0.013 59	BLES	10		
AGENCY		PB 12128/92 UG/M3	0.33 0.29 0.43 0.48	0.38 59	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
SITE 001	ALS	FE 12126/92 UG/M3	0.97 0.67 0.42 0.39	0.62				
AREA 1210	MET	CU 12114/92 UG/M3	0.05 0.05 0.08	0.07 59	S)r	PH 12602/91 PH-UNITS	8.80 7.50 3.50 8.90	8.42 59
TOWN NAME WALLINGFORD		CR 12112/92 UG/M3	0.002 0.002 0.001 0.004	0.002	S	SODIUM 12184/92 UG/M3		
YEAR 1982		CD 12110/92 UG/M3	0.0009 0.0011 0.0007 0.0007	0.0009	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.10 0.13 0.13	0.12 59
		BE 12105/92 UG/M3	8DL 8DL 8DL 8DL	0.000	WA	SULFATE 12403/92 UG/M3	11.24 8.60 7.23 6.46	8.40 59
		AL 12101/92 UG/M3		,		NITRATE 12306/92 UG/M3	2.03 2.58 1.45	1.91 59
		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

c	3
ū	
Ξ	
=	,
4	-
۰	
۰	_
	,
-	
C	2
L	3
_	
	٠
đ	
σ	
u	1
u	1
u	1
u	1
	1

			ZN 12167/92 UG/M3	0.30 0.13 0.10	0.16 61		APPROX SAMPLE COUNT	<u> </u>	
			V 12164/92 UG/M3	0.03 0.02 0.03	0.02	•	400		
			NI 12136/92 UG/M3	0.012 0.006 0.006 0.009	0.008	TSP	ARITH AV 11101/91 UG/M3	64 8 4 6 4 8 4 8 4 8 4 8 9 8 8 9 8 9 8 9 8 9 9 8 9 9 9 9	49 61
, 1982	PROJECT 01		MN 12132/92 UG/M3	0.019 0.014 0.008	0.013	BLES	16		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY F		PB . 12128/92 UG/M3	0.38 0.29 0.58	0.44	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 005		FE 12126/92 UG/M3	1.09 0.63 0.47 0.45	0.66				
AL CHARACTE	AREA 1240	METALS	CU 12114/92 UG/M3	0.00 0.09 0.09	61	·	PH 12602/91 PH-UNITS	7.00 8.10 8.40 8.60	8.03 61
ERLY CHEMIC	TOWN NAME WATERBURY		CR 12112/92 UG/M3	0.011 0.008 0.005 0.004	0.007	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0019 0.0021 0.0017 0.0023	0.0020	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.15 0.13 0.17 0.14	0.15
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	WA	SULFATE 12403/92 UG/M3	10.24 9.07 6.50 9.79	8.91 61
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	4.06 3.22 1.16 1.96	2.59 61
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

TABLE 9, CONTINUED

			V 12164/92 UG/M3	0.02 0.01 0.02	0.02	I	4 W O		
			NI 12136/92 UG/M3	0.007 0.005 0.003 0.006	0.005	TSP	ARITH AV 11101/91 UG/M3	54 88 88 88	46 60
1982	PROJECT 01		MN 12132/92 UG/M3	0.014 0.013 0.005	0.011	BLES	.		
HI-VOL TSP	AGENCY F		PB 12128/92 UG/M3	0.21 0.24 0.41 0.34	09 090	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	SITE 006	METALS	FE 12126/92 UG/M3	0.66 0.53 0.47 0.23	0.47				
AL CHARACTE	AREA 1240	MET	CU 12114/92 UG/M3	0.07 0.10 0.09 0.11	0.09		PH 12602/91 PH-UNITS	7.20 8.00 8.50 8.40	8.02 60
FERLY CHEMIC	TOWN NAME WATERBURY		CR 12112/92 UG/M3	0.005 0.003 0.005	0.004	S	SODIUM 12184/92 UG/M3		
QUART	VEAR 1982		CD 12110/92 UG/M3	0.0013 0.0007 0.0011	0.0013 60	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.16 0.15 0.15	0.15
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000	/M	SULFATE 12403/92 UG/M3	11.56 8.97 9.35 11.27	10.32 60
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	4.76 2.32 2.35 3.44	3.24 60
			QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT	**	QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG

0.18 0.09 0.07 0.12 60

TABLE 9. CONTINUED

			ZN 12167/92 UG/M3	0.24 0.20 0.24 0.24	0.22	4	APPROX SAMPLE COUNT	4 S E E D	
			V 12164/92 UG/M3	0.03 0.02 0.03	0.02	'	4 000		
			NI 12136/92 UG/M3	0.011 0.007 0.008 0.009	0.009	TSP	ARITH AV 11101/91 UG/M3	7 64 48 64 64	5 5 8
1982	PROJECT 01		MN 12132/92 UG/M3	0.022 0.020 0.013 0.010	0.016 58	<u> SPES</u>	10		
QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	AGENCY		PB 12128/92 UG/M3	0.52 0.39 0.63 0.74	0.57 58	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
RIZATION OF	SITE 007		FE 12126/92 UG/M3	1.20 0.93 0.68 0.53	0.83 58			.*	
AL CHARACTER	AREA 1240	METALS	CU 12114/92 UG/M3	0.38 0.38 0.00	0.29 58		PH 12602/91 PH-UNITS	7.20 7.60 8.60 7.80	7.78 58
ERLY CHEMICA	TOWN NAME WATERBURY		CR 12112/92 UG/M3	0.007 0.007 0.007 0.009	0.007		SODIUM 12184/92 UG/M3		
QUARTE	YEAR 1982 V		CD 12110/92 UG/M3	0.0027 0.0009 0.0037 0.0012	0.0021	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.15 0.14 0.15	0.15 58
			BE 12105/92 UG/M3	80L 80L 80L 80L	0.000 58	WA.	SULFATE 12403/92 UG/M3	12.13 8.49 9.00 10.24	9.97 58
			AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	3.85 2.95 1.54 1.75	2.52 58
			QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

NUED
CONTI
၈
TABLE

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982

	ZN 12167/92 116/113	0.33 0.17 0.14 0.22	0.22		APPROX SAMPLE	4400	!
	V 12164/92 UG/M3		0.02		1 4000	•	
	NI 12136/92 UG/M3	0.014 0.007 0.007 0.009	0.009	qST	ARITH AV 11101/91 UG/M3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	63 58
PROJECT 01	MN 12132/92 UG/M3	0.034 0.018 0.013	0.019 58	BLES	1		
AGENCY	PB 12128/92 UG/M3	0.71 0.47 0.73 0.89	0.70 58	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
123 123 METALS	FE 12126/92 UG/M3	1.76 0.87 0.71 0.68	0.99 58				
AREA 1240	CU 12114/92 UG/M3	0.05 0.06 0.08	0.07 58		PH 12602/91 PH-UNITS	8.60 7.60 8.50 7.60	8.07 58
TOWN NAME WATERBURY	CR 12112/92 UG/M3	0.00 0.00 0.00 0.00 0.00	0.010 58	S	SODIUM 12184/92 UG/M3		
VEAR 1982	CD 12110/92 UG/M3	0.0032 0.0054 0.0045 0.0015	58	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.12 0.13 0.13 0.14	0.13 58
	BE 12105/92 UG/M3	80L 80L 80L 80L	0.000 58	WA	SULFATE 12403/92 UG/M3	12.15 8.18 10.83 9.44	10.15 58
	AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.75 2.14 2.27 1.52	2.16 58
	QUARTER	FIRST SECOND THIRD FOURTH	VEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG

NoT A VALID TSO SITE

TABLE 9, CONTINUED

			QUART	ERLY CHEMIC	AL CHARACTE	RIZATION OF	QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982	, 1982			
			YEAR 1982	TOWN NAME WATERFORD	AREA 1260	SITE 001	AGENCY	PROJECT 02			
					MET	ALS					
QUARTER	AL 12101/92 UG/M3	BE 12105/92 UG/M3	CD 12110/92 UG/M3	CR 12112/92 UG/M3	CU 12114/92 UG/M3	FE 12126/92 UG/M3	PB 12128/92 UG/M3	MN 12132/92 UG/M3	NI 12136/92 UG/M3	V 12164/92 UG/M3	ZN 12167/9 UG/M3
FIRST SECOND THIRD FOURTH		80L 80L 80L 80L	0.0005 0.0007 0.0015 0.0007	BDL 0.001 0.002 0.002	0.02 0.05 0.07 0.03	0.20 0.26 0.40 0.06	0.08 0.10 0.15	0.005 0.008 0.007 0.002	0.004 0.004 0.005 0.007	0.01	0.02 0.03 0.02 0.01
YEAR AVG		0.000	0.0009	0.001	0.04 56	0.23 56.	0.11 56	0.005	0.005	0.01 56	0.02 56
		M/	WATER SOLUBLE	ES			BENZ SOLUBLES	JBLES	TSP		
QUARTER	NITRATE 12306/92 UG/M3	SULFATE 12403/92 UG/M3	AMMONIUM 12301/91 UG/M3	SODIUM 12184/92 UG/M3	PH 12602/91 PH-UNITS		TOTAL 11103/91 UG/M3	.91	ARITH AV 11101/91 UG/M3		APPROX SAMPLE COUNT
FIRST SECOND THIRD FOURTH	1.59 2.07 1.68 1.26	8.88 6.62 4.81 8.84	0.08 0.07 0.07 0.08		7.30 8.00 8.80				38 38 24 8		4 E E E E
YEAR AVG COUNT	1.63 56	7.40 56	0.08 56		8.05 56				31		

ZN 12167/92 UG/M3

0.02 0.03 0.02 0.01

TABLE 9, CONTINUED

QUARTERLY CHEMICAL CHARACTERIZATION OF HI-VOL TSP, 1982

		ZN 12167/92 UG/M3	0000	0.04		APPROX SAMPLE COUNT	4 12 12 0	
		V 12164/92 UG/M3	0.08 0.02 0.03	0.04		, 4000		
		NI 12136/92 UG/M3	0.021 0.009 0.013	0.013	TSP	ARITH AV 11101/91 UG/M3	33 4 55 3 2 5 5	4 0
PROJECT 01		MN 12132/92 UG/M3	0.015 0.010 0.005 0.004	0.008	JBLES	16		
AGENCY F		PB 12128/92 UG/M3	0.29 0.20 0.27 0.30	0.27 60	BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
SITE 002	ALS	FE 12126/92 UG/M3	0.80 0.41 0.22 0.20	0.40				
AREA 1410	MET	CU 12114/92 UG/M3	0.04 0.06 0.07 0.05	0.06	::	PH 12602/91 PH-UNITS	7.40 8.30 7.70 9.00	8.13 60
TOWN NAME WILLIMANTIC		CR 12112/92 UG/M3	0.002 0.001 0.001 0.003	0.002	S	SODIUM 12184/92 UG/M3		
YEAR 1982		CD 12110/92 UG/M3	0.0009 0.0005 0.0004 0.0006	0.0006	WATER SOLUBLES	AMMONIUM 12301/91 UG/M3	0.08 0.09 0.09	0.00
		BE 12105/92 UG/M3	80L 80L 80L	0.000	M	SULFATE 12403/92 .UG/M3	11.60 12.50 11.19 7.91	10.74 60
		AL 12101/92 UG/M3				NITRATE 12306/92 UG/M3	2.06 1.64 1.47 0.92	1.50
		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT		QUARTER	FIRST SECOND THIRD FOURTH	YEAR AVG COUNT

TABLE 10

MONTHLY CHEMICAL CHARACTERIZATION OF LO-VOL TSP, 1982

PROJECT 01

AGENCY F

SITE 001

AREA 0520

TOWN NAME MANSFIELD

<u>METALS</u>	ZN 12167/92 UG/M3	0.02	0.02	APPROX SAMPLE COUNT		
	V 12164/92 UG/M3	0.0000000000000000000000000000000000000	0.02			
	NI 12136/92 UG/M3	0.002 0.005 0.005 0.002 0.003 0.008 0.007 0.005	0.006 12 TSP	ARITH AV 11101/91 UG/M3	36 27 30 30 31 31 31	33 12
	MN 12132/92 UG/M3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.006 12 LES			
	PB 12128/92 UG/M3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.12 12 BENZ SOLUBLES	TOTAL 11103/91 UG/M3		
	FE 12126/92 UG/M3	0.26 0.58 0.33 0.28 0.25 0.39 0.18 0.17	0.30			
	CU 12114/92 UG/M3	0.01 0.01 0.01 0.01 0.01 0.01 8DL 8DL	0.01	PH 12602/91 PH-UNITS	7.20 7.20 7.40 6.80 6.80 6.80 5.80 5.80 7.80 8.40	7.03
	CR 12112/92 UG/M3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.001 12 ES	SODIUM 12184/92 UG/M3		
	CD 12110/92 UG/M3	0.00010 0.00010 0.00003 0.00003 0.00005 0.00005 0.0005	0.0005 12 Water Solubles	AMMONIUM 12301/91 UG/M3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.08
	BE 12105/92 UG/M3	80L 80L 80L 80L 80L 80L 80L 80L	0.000	SULFATE 12403/92 UG/M3	8 2.3 9 6 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5.86
	AL 12101/92 UG/M3			NITRATE 12306/92 UG/M3	2.53 3.28 3.22 1.13 1.50 0.88 0.97 1.54	1.68
	MONTH	JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY SEPTEMBER OCTOBER NOVEMBER	VEAR AVG COUNT	MONTH	JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER	YEAR AVG COUNT

TABLE 10, CONTINUED

	MONT YEAR 1982	MONTHLY CHEMICAL R TOWN NAME 2 PUTNAM	l l	SITE 002	CHARACTERIZATION OF LO-VOL TSP, AREA SITE AGENCY 0900 002 F	PROJECT 01			
m		PUTNAM	060	0 002 <u>METALS</u>	LL.	10			
BE CD 12105/92 12110/92 UG/M3 UG/M3		CR 12112/92 UG/M3	CU 12114/92 UG/M3	FE 12126/92 UG/M3	PB 12128/92 UG/M3	MN 12132/92 UG/M3	NI 12136/92 UG/M3	V 12164/92 UG/M3	
0.0000		0.002	0.000	0.50 0.87 0.92 0.14		0.008 0.014 0.013	0.004 0.005 0.005 0.005	0.02 0.02 0.02 0.01	
0.0003 0.0003 0.0002 0.0002		0.000	0.01 8DL 0.01 8DL 8DL 0.01	0.34 0.32 0.24 0.17 0.11	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.010 0.004 0.005 0.005	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00000	
0.0007		0.002	BDL	0.38	0.16	0.005	0.005	0.02	
0.0004		0.002	0.01	0.43	0.14	0.007	0.004	0.02	
WATER SOLUBLES	ŭį	9			BENZ SOLUBLES	LES	TSP		
SULFATE AMMONIUM 12403/92 12301/91 UG/M3 UG/M3		SODIUM 12184/92 UG/M3	PH 12602/91 PH-UNITS		TOTAL 11103/91 UG/M3		ARITH AV 11101/91 UG/M3	APPROX SAMPLE COUNT	~ ~ —
			7.40 7.00 7.00 6.40 6.80 6.80 6.80				757 744 744 750 750 750 750 750 750 750 750 750 750		
60.0			0.08				40	-	
0.08			6.34				141		

0.03 0.03 0.05 0.05 0.02 0.02 0.02 0.02

YEAR AVG COUNT JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER

VEAR AVG COUNT

JANUARY FEBRUARY MARCH APRIL MAY

MONTH

JANUARY FEBRUARY MARCH APRIL ADRIL JUNE JULY SEPTEMBER OCTOBER NOVEMBER DECEMBER

MONTH

UNITS : MICROGRAMS PER CUBIC METERS 1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH MIND DATA

TOWN/SITE	SAMPLES	H	0	м	4		9	~	60	6	01
		(3)		38	NO		(MM)	MM	7	1	NE
ANSONIA 003		239	146	144	137	,	8		87	38	ಹ
	DATE	2/25/82	2/22/82	2/16/82	2/13/82	٠	2/10/82	۸.	4.	4/11/82	3/27/82
METEOROLOGICAL SITE	DIR (DEG)	330	350	330	360		200			500	200
NEWARK	VEL (FIPH)	9 6	***	υ č	7.6		74.7			T0./	20.5
	•	7 6 6	0.47	ייי פיי מייי	739		923			0.74	0 922
METEOROLOGICAL SITE	DIR (DEG)	330	360	340	350		330			200	300
BRADLEY	VEL (MPH)	13.8	9.0	5.3	7.4		10.4			14.0	16.6
	EH	14.1	9.5	7.6	ю го		11.1			14.4	16.8
		0.980	0.949	0.700	0.874		0.942			0.975	0.985
METEOROLOGICAL SITE	DIR (DEG)	330	340	310	350		200			190	280
BRIDGEPORT	VEL (MPH)	11.5	11.7		, o		12.0			10.4	11.9
	RATTO	11.9 0.962	2.11.0	8.01	TO:4		12.5			4.5 988	\$ 77 U
METEOROLOGICAL SITE	EG)	320	20	310	350		290			220	280
	VEL (MPH)	18.2	7.3	8.1	8.9		12.3			12.4	21.4
	~	18.7	7.6	6.6	7.9		12.9			12.8	21.7
	RATIO	0.973	0.956	0.816	0.861		0.952			0.966	0.988
			/	(All)	CHY C		5				(MN)
Pot Tool Tool	9	8	a a			č	, K	76	7	ď	34
DATUGETUR OUT	7 A C	74	19/25/82	28/4[/6	9/14/82	7/4/82	2/20/82	5/17/82	78/87	10/ R/R2	2/10/82
METEOROLOGICAL SITE	DIR	220	210	330	160	220	190		120	210	300
NEMARK	VEL	7.4	4.7	6.0	W	7.6	7.0	1.7	\$. \$	0.0	14.2
	SPD	8.1	7.3	10.5	5.0	9.5	8.1	7.3	5.8	10.5	15.4
		0.925	0.645	0.565	0.651	0.822	0.871	0.229	0.765	0.941	0.923
METEOROLOGICAL SITE		150	180	340	170	280	200	360	200	01	330
BRADLEY		e. 6	0.	w.		0.0	т. М. с	w r	w r ru c	м «	\$. 10. 10.
	SPD (MPH.)	9.6	3. G	9.0	, c	2.5	, o	υ. Σ	٠ د د د د د) t	11.11
TITO INCIDENTIAL	KALLU PTP (BEC)	0.697	986	6.700 2.20	218.0	930	0.850 00.0	41G-0	000.		745
MEIEUKULUGICAL SIIR RDINGEDORI	Ь	7 Y	5. 4 4. 4	9 25	3.6	2 10	2 0	6.T	3.7	n N	12.0
		9	. v.	10.8	4	6.5	5.0	6.3	4.	v.	12.5
	RATIO	0.994	0.980	0.602	0.779	0.895	0.833	0.301	0.890	0.934	0.957
METEOROLOGICAL SITE	OIR	280	250	310	210	290	240	350	230	09	290
MORCESTER		. S. L	0.11		Ą. Γ Q. Γ	1 0	u i	α ·	เมิง	 	12.3
	SPD (MPH)	2.7	11.1	, , ,	υ υ υ		o .c	0 0		0.6	16.7
	NA! TO	0.199	0.990	0.010	6.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.026	0.737	20.5	346	7.25
			\			(SE)	>		SE	Sal	
BRIDGEPORT 009	19	26	82	82	81	28	75	73	92	69	69
		11/ 1/82	3/30/82	5/11/82	7/16/82	9/14/82	6/16/82	6/28/82	2/16/82	3/24/82	10/ 8/82
METEOROLOGICAL SITE	DIR	220	190	20	220	160	230	120	330	160	210
NEMARK		7.4	7.0	1.7	7.6	M 1	12.5	\$ (v (J 1	٠, د د د
	SPD (MPH)	H. 19	8.1	7.3	2.6	2.0	14.1	ָ י י י	10. V 7	٠.	4.0.0 4.0.0
		0.925	0.871	0.229	0.822	149.	0.886 220	. /eb	4.50 V.50 V.50 V.50 V.50 V.50 V.50 V.50 V	0.6%	1 . 2 .
METEOROLOGICAL SITE	֚֡֝֟֝֟֝֟֟֝֟֝֟֝֟֝֟֝֟֟֝֟֟֝֟֟֝֟֟֝֟֟֝֟֝֟֝֟֝֟֟֝֟) (1	0 r	000	200)) H	, k	, r	⊃ α 4 d	9 6
BRAULEY	Y VEL (MPH)	4 6	ų «	י ת ס מ	, v	, r , r	ה ה ה	u ru	 	เก	` o
	DATIO	0.697	2 250	2 2 4	100	0.815	0.580	0.688	0.700	0.883	0.963
	1	;)	!	•	1	1	,))	: :		1

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

							- .	UNITS: M	ICROGRAMS	PER CUBI	C METERS
TOWNSITE	SAMPLES	-	8	м	4	ιū	9	7	ထ	6	10
THE TRUE TO TO TO THE THE	2	6	5		000	9	6	9		S	G
TELECROLOGICAL SILE	VER (DEG)	2 4) () u	7 7	0 0 0 0	7 P	010) G	у п Э п
purportion	SPD (MDH)	אינ	היי		י טע	9 4	T. OF	. 4	9 6	י י י	י ה ה
	RATIO	966.0	0.833		0.895	0.779	0.963	0.890	0.602	0.726	0.934
METEOROLOGICAL SITE	DIR (DEG)	280	240		290	210	260	230	310	180	09
64	VEL (MPH)	5.7	5.8		6.9	4.9	9.8	5.5	8.1	8.4	5.1
•	SPD (MPH)	7.2	7.0		7.3	ъ. 5	11.5	6.2	6.6	ري ق	5.6
	RATIO		0.822		0.945	0.899	0.848	968.0	0.816	0.838	0.912
		(GN)	7	7		>	1)	(K)		(PM
BRIDGEPORT 123	115		116		110	109	107	105	102	101	86
	DATE	_	7/19/82		7/16/82	5/20/82	3/30/82	2/ 7/82	9/14/82	4/20/82	2/25/82
METEOROLOGICAL SITE	DIR (DEG)		250		220	240	190	250	160	170	330
NEMARK	VEL (MPH)		d .		9.6	14.0	0 · a	13.5	ν. ν. σ	ر در ار	2 2 3 4 4
	SrD (iirii) RATIO		0.900		0.822	0.957	0.871	0.960	0.651	0.907	0.960
METEOROLOGICAL SITE	DIR (DEG)		210		280	210	200	250	170	190	330
>	VEL (MPH)		4.9		0.3	7.1	5.3	8.8	2.8	11.8	13.8
	SPD (MPH)		6.2		3.5	7.6	6.2	6.6	м 4.	12.1	14.1
	RATIO		0.786		0.109	0.931	0.850	0.886	0.815	0.973	0.980
METEOROLOGICAL SITE	DIR (DEG)		250		022	720 6.6	1,40 2,4	12.9	7.6 3.6	100 1.3	33.50
	SPD (MPH)		7.5		6.5	7.0	5.0	13.7	9.4	r.	11.9
	RATIO		0.993		0.895	0.938	0.833	9.66	0.779	0.758	0.962
METEOROLOGICAL SITE	DIR (DEG)		270		290	260	240	260	210	220	320
MORCESTER	VEL (MPH)		6.7		6.9	8.3	ر ب ب	9.5	6. 1	10.8	18.2
	SPD (MPH)		7.9		7.3	e .	7.0	9.8	5.5	11.6	18.7
	RATIO		0.843		0.945	0.951	0.822	97.6	0.899	0.928 0	0.975
		>	(3×)					32	Ĺ	W W	7
BRISTOL 001	59		68		F	נ	2	69	29	63	62
	DATE		12/13/82		1/ 5/82	6/28/82	7/16/82	2/16/82	1/11/82	9/14/82	4/17/82
METEOROLOGICAL SITE	DIR (DEG)		330		280	120	220	330	260	160	200
NEMARK	VEL (MPH)		11.5		15.7	ֆ Մ.	9 6		18.8	, ro	17.1
	RATTO		0.887		0.905	0.765	0.822	0.565	966.0	0.651	976.0
METEOROLOGICAL SITE	DIR (DEG)		350		290	200	280	340	260	170	200
>-	VEL (MPH)		5.5		15.5	3.5	0.3	10	14.6	8.4	14.0
	SPD (MPH)		6.3		17.7	5.0	3.5	7.6	15.1	w 6	14.4
	RATIO		0.869		0.878	389.0	907.0	00/. 01/2	0.968 260	2.0 2.0 2.0	6.4/5 190
MEIEURULUGICAL SITE	VEI (MDE)		Σ Γ		200) N	3 10	, 40 14	26.3	9.6	4.01
20100420	SPO (MPH		, w		23.0	4.	6.5	10.8	26.6	9.4	10.5
	RATIO		0.969		0.955	0.890	0.895	0.602	166.0	0.779	988
METEOROLOGICAL SITE	DIR (DEG)		330		280	230	290	310	250	210	220
MORCESTER	VEL (MPH)		7.1		21.9	ហ	6.9	8.1	12.4	4) i	12.4
	SPD (MPH)		89		22.1	6.2	7.3	6.6	13.1		12.8 8.51
	RATIO	0.822	9.86¢		0.788	6.8%	٠. ۲٠ ١	0.00	0.756	0.077	0.200

	1982	TEN HIGHEST		JR AVERAGI	24 HOUR AVERAGE TSP DAYS	MITH MIND	4D DATA		10000 a 100	2	
							_		FILCROGRAFIS	PER CODIC	TE (EKS
TOWN/SITE	SAMPLES	H	~	M	4	ď	9	7	œ	6	01
					S	JAE J	100	>	7	NN	\
BURLINGTON 001	117	59	≽ ਨੂ	23	\ G	ž.	55	41	38		œ M
	DATE	6/28/82	6/16/82	7/16/82	9/14/82	6/ 4/82	3/30/82	7/ 7/82	28/2 /6	N	4/17/82
METEOROLOGICAL SITE	DIR (DEG)	120	230	220	7.2 2.3	10.7	190 7.0	10.5	10.9		200
	SPD (MPH)	. 63 . 8	14.1	9.5	0.0	11.9	8.1	11.4	11.2		17.1
	RATIO	0.765	0.886	0.822	0.651	0.899	0.871	0.924	976.0		0.974
	DIR (DEG)	200	220	280	170	2 2	200	500	180		200
BRADLEY	VEL (MPH)	w n	6. 69 6. 69	, v	7 10 10 10	ນ ດ ໝໍ້			о /		14.0
	RATIO	0.688	0.580	0.109	0.815	0.636	0.850	0.975	0.863		0.975
		100	200	220	100	20	190	230	200		190
BRIDGEPORT		3.7	9.7	υ. 8	9.6	10.8	4.0	7.7	6.9		10.4
	SPD (MPH)	4. 2.2	10.1	6.5 7.00	4.6	11.4 0.955	5.0 0 823	7.5 0.68	7.7 1.96.1		10.58 0.988
METEOROLOGICAL SITE	DIR (DEG)	230	260	290	210	80	240	240	220		220
Oc.		5	9.8	6.9	6.4	7.6	5.8	9.1	4.6		12.4
		6.2	11.5	7.3	5.5	8.3	7.0	9.6	9.6		12.8
	RATIO	968.0	0.848	0.945	0.899	0.911	0.822	0.950	0.978	1	996.0
			(FE)	(MR)	(MM)		A COM	(SE)	\	NE	
DANBURY 002	58	147	145	123	Ä	93	\16/ -	98	81	18	62
	DATE	2/22/82	3/24/82	2/16/82	12/13/82	3/30/82	17 5/82 280	78/41/6	2011/4	28/77/8	79/97/
METEUROLUGICAL SITE	VEI (MDH.)	064 4	יי פרי	ט ע ט פי	10.3	7.0	13.7	3.3	16.7) n	2.6
	SPD	14.8	7.9	10.5	11.6	8.1	15.1	5.0	17.1	10.8	9.5
	RATIO	0.970	0.690	0.565	0.887	0.871	0.905	0.651	0.974	0.845	0.822
METEOROLOGICAL SITE		360	170	340 1	350	200	5 1 1 1	170	200	010	280
BRADLEY	VEL (MPH)	0.6	où r	5.7	5.5 4.5	ر د د	17.5	8.8	14.0 4.0) (. v
	RATTO	949	0.883	0.700	0.869	0.850	0.878	0.815	0.975	0.404	0.109
METEOROLOGICAL SITE	DIR (DEG)	340	06	310	340	190	280	100	190	260	220
BRIDGEPORT		11.7	о і О	6.5	8.1	4.2	22.0	9.0	10.4	W L	ຜູ້ແ
	SPD (MPH)	11.8 0 980	5.5	10.8 0 602	α.ν Θ	5 P. C	0.655 0.955	0.779	0.988	0.706	0.895
METEOROLOGICAL SITE	DIR (DEG)	8	180	310	330	240	280	210	220	10	290
MORCESTER		7.3	¢.8	8.1	7.1	5.8	21.9	6.	12.4	0 0 1	6.9
	SPD (MPH)	7.6	5 5 6 7	6.6	80.0	7.0	22.1	ر ا ا	12.8	د. تاریخ	7.3 965
	KALIU	2,2	0.000		* ().	3					
	1	32	\ ;				ş	9	u z	13	7.0
DANBURY 123	58	122	101	400,000	06	3 / II /0 /	647177	0/	70/21/2	5/17/82	77 8/82
TITS 180100 1000 TIM	DAIE .	78/51/21 730	36/05/5	160	160	280 280	220	120	330	2077	210
NEWARK		10.3	7.0	5	M	13.7	7.6	4.4	9.1	1.7	6.6
		11.6	8.1	6.7	5.0	15.1	9.5	5.8	10.8	7.3	10.5
	RATIO	0.887	0.871	0.690	0.651	0.905	0.822	0.765	0.845	0.229	1941
METEOROLOGICAL SITE	SIS.	350	200	170	0/1 *	2,47 7,71	287	א גפ	0 TO	0 0	3,9
BRADLET	SPD (MPH)	0 9 0 10	. o	, ru G	м	17.7	, w	0	4.0	. w	6.0
	RATIO	0.869	0.850	0.883	0.815	0.878	0.109	0.688	0.404	0.514	0.963

TABLE 11, CONTINUED

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH MIND DATA

			2 2 10	OR AVENAG	יטר עאוי	M U I W	AL DAIA	UNITS : M	ICROGRAMS	PER CUBIC	C METERS
TOWN/SITE	SAMPLES	н	8	м	4	τĴ	9	7	œ	6	10
METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH)	340 8.1 8.3	190 4.2 5.0	3.9		280 22.0 23.0	220 5.8 6.5	3.7	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	210	200 5.5 5.9
METEOROLOGICAL SITE Morcester	RALIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	8.2 0.864	0.855 240 5.8 7.0 0.822	0.726 180 4.8 5.8 0.838	errie.	280 280 21.9 22.1 0.988	0.895 290 6.9 7.3 0.945	0.890 230 5.5 6.2 0.896	2.8 5.5 0.518	0.301 350 8.1 8.6 0.937	60 60 5.1 5.6 0.912
EAST HARTFORD 004 METEOROLOGICAL SITE NEWARK	19 DATE DIR (DEG) VEL (MPH) SPD (MPH)	12/13/82 330 10.3 11.6	61 10/ 8/82 210 9.9	61 11/ 1/82 220 7.4 8.1	N	55 12/ 1/82 80 2.5 4.3	44 12/31/82 10 8.1 9.1	39 12/25/82 210 4.7 7.3	35 9/20/82 40 6.9 9.3	35 35 31/19/82 50 10.8 11.8	34 11/ 7/82 260 9.4 10.5
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH)	0.007 5.50 6.3 0.869 340 8.1	0.41 0.963 0.963 5.55 5.9	0.925 150 1.8 2.6 0.697 6.3	0.651 170 2.8 3.4 0.815 100 3.6 4.6	0.585 200 2.7 2.9 0.945 220 2.3 5.2	0.839 350 1.9 3.7 0.520 20 5.2 6.3	0.645 180 4.0 0.989 230 4.4	0.740 20 3.2 3.6 3.6 0.890 50 7.7	0.918 40 7.0 7.5 0.941 60 8:1	0.893 280 5.5 7.2 0.768 6.3 6.5
METEOROLOGICAL SITE MORCESTER GREENWICH DOR	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.969 330 7.1 8.2 0.864	0.934 60 5.1 5.6 0.912	0.994 280 5.7 7.2 0.799		0.438 220 4.6 4.9 0.946	0.816 270 2.4 4.7 0.503 75	0.980 250 11.0 11.1 0.990	0.941 80 4.9 5.6 0.880	0.960 60 8.0 8.1 0.993	0.978 280 7.7 8.3 0.928
METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE BRADLEY	DIR (SPD (SPD (RATIO DIR (SPD (5/17/82 70 1.7 7.3 0.229 360 3.0 5.8	11/ 1/82 220 7.4 8.1 0.925 150 1.8 2.6	9/14/82 160 3.3 5.0 0.651 2.8 3.4	7/16/82 220 7.6 9.2 0.822 280 0.3 3.2	3/30/82 190 7.0 8.1 0.871 5.3 6.2	75 2716/82 330 5.9 10.5 0.565 5.3 7.6	75 2/10/82 300 14.2 15.4 0.923 330 10.4 11.1	/2 6/16/82 230 12.5 14.1 0.886 220 220 5.3 9.2 9.2	72 1/11/82 260 18.8 18.8 0.996 260 14.6 15.1	4/11/82 4/11/82 7.4 10.4 0.713 220 4.3 6.3
METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE MORCESTER		0.301 350 8.1 8.1 8.6	6.3 6.3 6.3 0.994 280 5.7 7.2 0.799	210 2.6 4.6 0.779 210 4.9 5.5 0.899		190 4.2 5.0 5.0 240 5.8 7.0	510 6.5 10.8 0.602 310 8.1 9.9	200 12.0 12.5 0.957 290 12.3 12.9	200 9.7 10.1 0.963 260 9.8 11.5	26.0 26.3 26.6 0.991 250 12.4 13.1	5.1 5.3 0.956 230 7.0 8.6

	,			5							
	7847	EN MIGH	1982 IEN MIGHEST 24 HOUR AVERAGE	UR AVERAC	SE TSP DAYS		MITH MIND DATA	UNITS : P	MICROGRAMS PER CUBIC METERS	BER CUBI	C METERS
TOWN/SITE	SAMPLES	Ħ	2	M	\$	ĸ	9	4	80	6	10
			3	OF				S. S.		\	(x)
HADDAM 002	57		63	74	44	44	43) 5	45	> %]4
METEOROLOGICAL SITE	DATE	7/16/82	2/16/82	8/ 3/82	12/31/82	10/8/82	11/ 1/82	9/14/82	6/28/82	3/30/82	3/54/85
NEMARK			ы	2.0	8.1	9.6	7.4	160 3.3	120	130	160 E
	SPD (MPH)		10.5	9.6	9.1	10.5	8.1	5.0	. w	8.5	
METEORO! OCTOR! STTE	RATIO		0.565	0.729	0.899	0.941	0.925	0.651	0.765	0.871	0.690
BRADLEY BRADLEY	VEL (MPH)		240 7 40	02 °	350	10 2 °	150	170	500	200	170
		M 6	9.7	3 4	3.7	, 4 , 0	0 %	N 10	יי יי	 	գեր Ծ. բ
			0.700	0.542	0.520	0.963	769.0	0.815	0.688	0.850	0.883
MEIEOROLOGICAL SITE	DIR (DEG)		310	130	50	200	230	100	100	190	06
DALDGETON	SPD (MPH.)		۰ 5 ت «	ν, α γ, α	5.7	ເບີ່ກ ເບີ່ດ	6.3	w.	3.7	2.5	8.9
		0.895	0.602	0.724	0.816	0.934	0.994	0.77.0	2.4.0	5.0	5.3
METEOROLOGICAL SITE	DIR (DEG)		310	20	270	09	280	210	230	240	180
MORCESIER	VEL (MPH)			M.0	. r. . t.	1.5	5.7	4.9	57 57	5.8	6.4
			y. 9 7. 9	4.6 7.77	. , , ,	9.0	7.2	т. С.	6.2	7.0	5.8
			270.0	0.04 0.04	0.505	0.712	<u>در</u> در	0.899	0.896	0.822	0.838
		Ser /				33	H	>	\	Man	
HARTFORD 003		701	102	101	100	93	91	89	, 88 08	•	78
	DATE	2/25/82	3/30/85	2/16/82	3/18/82	12/13/82	3/24/82	10/29/82		1/ 5/82	5/17/82
METEOROLOGICAL SITE	DIR (DEG)	330	190	330	100	330	160	200		280	70
NEWARK	VEL (MPH)	18.5	0. a	ក ខ្មា	w c	10.3	i n	7.1	12.5	13.7	1.7
	<u>:</u>	0.960	0.871	0.565	0.0	0.11.0	6.7	7.5 0E2		15.1	7.3
METEOROLOGICAL SITE	(DEG)	330	200	340	180	350	170	170		206.0	260
BRADLEY	£	13.8	5.3	5.3	1.9	เบ เบ	4.8	2.6		15.5	9 0. 0.
	Ē	14.1	6.2	7.6	3.9	6.3	5.55	9.4		17.7	5.8
METEORO! OGTCA! STTE		0.980 230	190	0.700	\$6\$.0 **	0.869	0.883	0.562		0.878	0.514
BRIDGEPORT	Ê	11.5	2 4	o v	7.1	⊋† «	۸ 5 و	022		280	210
	(MDM)	11.9	5.0	10.8	5.6	, w	, W	, ru		23.0	, k
		0.962	0.833	0.602	0.368	696.0	0.726	0.748		0.955	0.301
METEURULUGICAL SITE	DIR (DEG)	320	240	310	310	330	180	260		280	350
	Î	18.7	0 0	9 0	7 . 2	- «	э u	บ บัง		21.9	
	;	0.973	0.822	0.816	0.410	0.864	0.838	0.891		0.988	0.0
			`	(2)							
HARTEORN 012	ŭ	C	> 2			Ç	(/;) !	3/1	
	DATE	7/16/82	3/30/82	3/24/82	2/16/82	11/ 1/82	69 F/17/82	^		63	62
METEOROLOGICAL SITE	DIR (DEG)	220	190	160	330	220	200			330	120
NEMARK	VEL (MPH)	7.6	7.0	ъ. Б	5.9	7.4	1.7			10.3	4.
	SPD (MPH)	9.2	8.1	7.9	10.5	8.1	7.3			11.6	5.8
	RATIO	0.822	0.871	0.690	0.565	0.925	0.229			0.887	0.765
METEUROLUGICAL SITE	DIR (DEG)	280	200	170	340	150	360	220	210	350	200
1 444 25512	SPD (MPH)	, e.	. 6 . 2	s ru o ru	7.6	0 %	່າແ			บ บ่ห	พ พ
	RATIO	0.109	0.850	0.883	0.700	0.697	0.514			0.869	5.0 0.688

TABLE 11, CONTINUED

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

								UNITS : P	IICROGRAMS	PER CUBIO	: METERS
TOWNSITE	SAMPLES	H	81	M	4	ις	•	7	ω	6	10
METEOROLOGICAL SITE		220	190	06	310	230	210	200	220	340	100
BRIDGEPORT	VEL (MPH)	5.8	4.2	9.6	6.5	6.3	1.9	4.7	7.6	8.1	3.7
	SPD (MPH)	6.5	0	rų M	10.8	6.3	6.3	10.1	7.8	8.3	4.2
	RATIO	0.895	0.833	0.726	0.602	466.0	0.301	0.963	0.985	9690	0.890
MEIEUKULUGICAL SIIE MODGESTED	VIEW CARDED	0 0 0	0 1 1 1	00T) T 8	7 K) () «	0 40 40	000	2, T 5, T
MONCESTER	SPD (MPH.)		0.0	. 60	. 6		9.00	11.5	. 6	8.2) v
	RATIO	0.945	0.822	0.838	0.816	0.799	0.937	0.848	0.981	0.864	0.896
		(MA)		2	\			No. of the last of		25	
HARTFORD 014	09	8	9/	74	> [20	29	9	62	3	50
	DATE 1		7/16/82	2/16/82	3/30/82	10/8/82	5/11/82	6/16/82	6/28/82	3/54/82	2/22/82
METEOROLOGICAL SITE	DIR (DEG)		220	330	190	210	2	230	120	160	350
NEMARK	VEL (MPH)		7.6	ر و ر	7.0	o. 6	7.7	12.5	\$ (\$ 1	i n	4. 4.
	SPU (MPH)		822	10.5 5,5,5	. S . L	10.5	0.229	14.1	765	6-7	14.0 0.970
METEOROLOGICAL SITE	DIR (DEG)		280	340	2002	101	360	220	200	170	360
>	VEL (MPH)		0.3	ru w		3.9	3.0	rų w	3.5	ج. ش	9.0
	SPD (MPH)		3.5	7.6	6.2	4.0	5.8	9.5	5.0	ri ri	9.5
	RATIO		0.109	0.700	0.850	0.963	0.514	0.580	0.688	0.883	0.949
METEOROLOGICAL SITE	DIR (DEG)		220	310	190	200	210	500	100	8,	, 840 0 t
BRIDGEFORI	SON (MDH.)		υ . . π	ອ ເ ບໍ່ຜ	4.4	ก ก	۲.۷ ۲.۷			υ π Σ κ	7.77
	מאדוס פאדוס		د د ه د ه	0.01	שינה מינה מינה	9.7 0.7	٠ د د د د	4.01	7.68	72.5	0 66
METEOROLOGICAL SITE	DIR (DEG)		290	310	240	60	350	260	230	180	, , , , , , , , , , , , , , , , , , ,
04	L VEL (MPH)		6.9	8.1	5.8	5.1	8.1	٠ 8	ri ri	4. 80.	7.3
	SPD (MPH)		7.3	6.6	7.0	5.6	8.6	11.5	6.2	ເປ ຜ	7.6
	RATIO		0.945	0.816	0.822	0.912	0.937	0.848	0.896	0.838	0.956
		S. S				7	N. C.				(B) P
MANCHESTER 001	09		81	73	70	99	99	57	57	52	56
	DATE		3/30/82	7/16/82	5/11/32	6/16/82	6/ 4/82	3/18/82	11/ 1/82	2/22/82	12/13/82
METEOROLOGICAL SITE	DIR (DEG)		1 100	220	2,	230	9 6	100	220	350	330
-	CADA CADA		۶. «	0 °	7.7	16.3	, 6 7 E	n «	r - α	1 2	9.5
	RATIO		0.871	0.822	0.229	0.886	0.899	0.378	0.925	0.970	0.887
METEOROLOGICAL SITE	DIR (DEG)		200	280	360	220	2	180	150	360	350
BRADLEY	(VEL (MPH)		ы. Ж	0.3	3.0	5.3	5.8	P.9	1.8	9.0	ਲ ਯੰ
	SPD (MPH)		6.2	3.5	ر ا ا ا	9.5	6.1	6.6 M	2.6	e, 9	9.0
	RATIO		0.850	935	9.75 0.15	0.580	0.020	ታ ና ት ት ጋ	0.097	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	600.0
METEUROLOGICAL SINE	L COL (MOR)		264 3	0 W	0 F	9 6	٠ د د	F 6	, Y C	7, [) n
DAIDGELON	SPD (MPH)		יר יכ	מיני	1 9	10.1	9.1	1 0	, N.	11.8	, w
	RATIO		0.833	0.895	0.301	0.963	0.955	0.368	966.0	0.989	0.969
METEOROLOGICAL SITE	DIR (DEG)		240	290	350	260	80	310	280	20	330
MORCESTER	VEL (MPH)		5.8	6.9	8.1	9.8	7.6	2.9	5.7	7.3	7.1
	SPD (MPH)		7.0	7.3	8.6	11.5	8.5	7.2	7.2	9.7.0	21.5
	RATIO	0.858	0.822	0.745	0.75/	ρ T T	U.711	O.*10	0.73	0.750	\$ 0.0

			5	, TT	TIME						
	1982	82 TEN HIGHEST		24 HOUR AVERAGE TSP		DAYS WITH WIND DATA	ND DATA	× VIIN	MTCDOCDAMS DED	7.18	VOUL LUX
								•	TCHOORAIN	FER CUBA	r ricialis
TOWN/SITE	SAMPLES	H	7	м	ঞ	rΩ	9	7	60	6	10
		(Z				\	1		(里)		1
MERIDEN 002	57	87	85	81	81	22	69	89) 5 9	49	, 49
THE STACE SOCIETY	ο,	1/ 5/82	5/17/82	2/22/82	7/16/82	3/30/82	6/16/82	11/ 1/82	82	10/ 8/82	4/11/82
METEUROLUGICAL SITE NEMARK	VEL (MPH)	13.7	1.7	550 14.4	7.6	190 7.0	250 12.5	220	207	210	200
		15.1	7.3	14.8	9.5	8.1	14.1	8.1	9.6	10.5	17.1
		0.905	0.229	0.970	0.822	0.871	0.886	0.925	0.729	0.941	976.0
METEOROLOGICAL SITE	DIR (DEG)	290	360	360	280	500	220	150	200	10	200
BRADLEY	Sen (MPH)	15.5	۸ ۳ ۵ ۵	e, e	0.5 3.5	5.3	o o	1.8 8.4	9.0	6.0	14.0
	SPD (MPH)	0.878	5.0	0,949	5.5	0.850	9.2	7.69	. 4.9 54.9	0.4.0	14.4 0 975
METEOROLOGICAL SITE	DIR (DEG)	280	210	340	220	190	200	230	130	200	190
BRIDGEPORT		22.0	1.9	11.7	5.8	4.2	7.6	6.3	3.9	5.5	10.4
٠	SPD (MPH)	23.0	6.3	11.8	6.5	5.0	10.1	6.3	5.3	5.9	10.5
METEOROL OSTER	DIR INFE	282	450 450	20	290	260	260	280	77.0 E0	40.0	220
MORCESTER		21.9	8.1	7.3	6.9	, ru	9.6	5.7	8.0 8.0	, rd	12.4
		22.1	8.6	7.6	7.3	7.0	11.5	7.2	4.6	5.6	12.8
	RATIO	0.988	0.937	0.956	0.945	0.822	0.848	0.799	0.645	0.912	996.0
				\			K	COM		7	7
MERIDEN 008	57	89	80	72	29	63	09	09	59	556	r. r.
		6/22/82	32	3/30/82	6/16/82	5/17/82	3/24/82	2/16/82	11/ 1/82	8/ 3/82	4/17/82
METEOROLOGICAL SITE	DIR (DEG)	150		190	230	20	160	330	220	20	200
NEWARK	VEL (MPH)	w.		7.0	12.5	1.7	ru u ru c	ກຸ່ວ ວ່າ	7.4	7.0	16.7
	RATIO	0.395		0.871	14.1	0.229	0.69.0	10.5 0.565	0.925	0.7.0	1./1 0.974
METEOROLOGICAL SITE				200	220	360	170	340	150	50 20 20	200
BRADLEY	VEL (MPH)			5.3	5.3	3.0	4.8	5.3	1.8	5.6	14.0
	SPD (MPH)			6.2	9.5	5.8		7.6	5.6	Q	4.6
METEOPOLOGICAL SITE	DIR (DEG)	4 CC		000.0	200) () ()	00.0 00.0	310	240	140	06.0
BRIDGEPORT		3.9	5.8	4.2	9.7	1.9	×,9	6.5	6.3	3.9	10.4
	SPD (MPH)	9.4		5.0	10.1	6.3	52.51	10.8	6.3	ម្ចា	10.5
METEODO OCTON	KALIU	658.0		260	260	250	02/.0	209.0	5.74 000	97/76 En	0.988 220
MORCESTER		5 - 6	6.9		9.8	8 5	8.	8	5.7	3.0	12.4
	SPD (MP	5.6	7.3	7.0	11.5	8.6	5.8	6.6	7.2	4.6	12.8
	RATIO	0.812	0.945	0.822	0.848	0.937	0.838	0.816	0.799	0.645	996.0
					(BE)	.)	(SE)		\		SE
MIDDLETOWN 003	56	78	69	65	65	49)29	19	29	29	29
	DAT	3/30/82	5/17/82	6/28/82	2/10/82	1/11/82	3/24/82	3/18/82	4/11/82	11/ 1/82	1/29/82
METEOROLOGICAL SITE	DIR (DE	130	02,	120	300	260	160	100	500 1	220	280
NEWARK	CON (MDH.)) · a	1./ 7.2	† 0 † u	14.7	10.01 0.01	ų v v o	٠ a	17.1	÷-	0.1.
	RATIO	0.871	0.229	0.765	0.923	0.996	0.690	0.378	974	0.925	0.831
METEOROLOGICAL SITE		200	360	200	330	260	170	180	200		290
BRADLEY		5.3	9.0	w i	10.4	14.6	4.1	e. 6	14.0	e (9.0
	SPD (MPH)	0.850	7.0 7.0	0.688	11.1	1.51	5.83 5.83	5.7	14.4	0.697	10.2
		; ; ;]]	! !	!	! !)))	! !		•	- -

TABLE 11, CONTINUED

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

								units :	1I CROGRAMS	PER CUBI	C METERS
IOMN/STIE	SAMPLES	H	N.	M	4	κλ	9	7	ဆ	6	10
METEOROLOGICAL SITE	DIR (DEG)		210	100	300	260		6	6		;
BRIDGEPORT	VEL (MPH)		6. H	3.7	12.0	26.3	, w	2.5	10.4	, , ,	082
	SPD (MPH)	•	6.3	4.2	12.5	56.6	5.3	9.6	10.5	, M	2.5
METEOROLOGICAL SITE	MALIO DIR (DEC)	0.833	0.301	0.890	0.957	166.0	0.726	0.368	0.988	966.0	0.893
MORCESTER	VEL (MPH)) r	2 K	2 40	042 F	180	310	220	280	280
	SPD (MPH)		9.00	9	4 6 6	# F F	ar n	0. i	12.4	ر د .	14.5
	RATIO	0	0.937	3.896	0 0 TO	1 c	0 0	7.7	12.8	7.2	14.8
					1		6.030	2 2 3 5	906.	66/.n	0.976
60000		1	ł	3	>	>	(S)		7	(3/8)	32
TILFURD DOZ	194	85	75	75	74	72	2(20	29	19	99
METEOROLOGICAL STEE	שואט סדה	230	7/16/82	9/14/82	3/30/82	1/11/82	3/24/82	6/28/82	4/11/82	1/29/82	2/16/82
NEWARK	VEL (MPM)	2,4	077	7 F0 F	2,70	2,000	160	120	270	280	.330
	SPD (MPH)	8.1	. 6	י ני י כ	. α	10.01 0.01	ก่อ	\$ C	4.7.	91	เม ()
	RATIO	0.925	0.822	0.651	0.871	966.0	0.690	ם ער ה	\$ 10.¢	11.5	10.5
METEOROLOGICAL SITE	DIR (DEG)	150	280	170	200	260	170	200	220	100.0	0.7 0.04 0.04
BRADLEY	VEL (MPH)	න ·	M .	8. 8.	ы. М.	14.6	8.4	ખ ત્ય	Ą.	0.6	ับ เมื
	SPO (MPH)	, r. , r.	3.2	M.	6.2	15.1	เป เบ	5.0	6.3	10.2	7.6
ATTSO IOGUE	KALLC OT BEC	769.0	6.109	0.815	0.850	0.968	0.883	0.688	0.685	0.885	0.700
BRIDGEPORT	VEL (MPH)	2 6	אות סמ	9 Y N F	130	260	90	100	190	280	310
	SPD (MPH)	, M	, o	9		26.5	, n		J I	10.0	G
	RATIO	966.0	0.895	0.779	0.833	166	726	γ α • α	2 0 2 1	2 F C	10.8
METEOROLOGICAL SITE	DIR (DEG)	280	290	210	240	250	180	230	057.0	0.00.0 0.00.0	200.0
MORCESTER	VEL (MPH)	5.7	6.9	4.9	5.8	12.4	Ø.	ู่ พ เข	7.0	1 4 0 4) r
	MPH)	7.2	7.3	بن ت	7.0	13.1	5.8	6.2	9.8	14: 00:	. 6
	KALIO	0.799	0.945	0.899	0.822	0.950	0.838	968.0	0.811	976.0	0.816
MORRIS 001	102) W	ις ις	y Ir) t	7	ū		(3) (3)	(F)	M.
	DATE	3/30/82	4/20/82	9/14/82	7/19/82	6/16/82	6/28/82	11/19/82	9/11/82	47 2/82	45 7/ 1/82
METEOROLOGICAL SITE	DIR (DEG)	190	170	160	250	230	120	50	280	320	320
NEMARK	VEL (MPH)	7.0	ง เบ	w w	r!	12.5	\$. \$	10.8	5.1	12.7	13.1
	_	- C	10.5	, 57 0.0	10.1	14.1	5. 8	11.8	0.9	13.5	13.9
METEOROLOGICAL SITE		700	/ O. L.	149.U	0.900	0.886	0.765	0.918	0.837	0.940	0.940
BRADLEY	VEL (MPH)	5 5 7 8	9,11	9 6		א ני א פ	7 K) 	>#C	925 7 L	, v
		6.2	12.1	м ф.	6.2	9.5	0.	7.5		† • •) «
		0.850	0.973	0.815	0.786	0.580	0.688	0.941	0.473	0.980	0.908
MEIEUROLOGICAL SITE	DIR (DEG)	190	160	100	230	200	100	09	250	330	330
BRIDGEFORI		4 L	3° 1	3.6	7.4	7.6	3.7	8.1	5.6	8.5	8.7
		5.0	, 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.4	7.5	10.1	4.2	8.5	5.2	9. N	8. 8.
ATTAC ICCONTAN	_	0.855	0.758	9.779	0.993	0.963	0.890	0.960	0.501	0.899	266.0
FSTER	VEI (MPH)	n ξα	077 8 UL	017	270	260	230	09 0	330	310	300
	SPD (MPH)	0.0	9.11	ָ ע	. 0	, E	บ์ ง บ์ ง) r	yi L	0. %	4.0
		0.822	0.924	0.899	0.843	0.848	7.8	7:00 U	5.7	14.4 071	9.9 010
) 				1	4	0.00

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS MITH MIND DATA

UNITS : MICROGRAMS PER CUBIC METERS

6/28/82 120 4.4 5.8 0.765 70 5/17/82 70 11.7 7.3 0.229 3.0 3.0 5.8 0.514 210 11.9 6.3 0.301 3.50 8.1 83 2/22/82 350 14.4 14.8 0.970 360 9.0 9.5 0.949 340 11.7 11.8 0.989 20 7.3 7.3 200 71 5/26/82 180 3.8 7.5 0.503 220 0.9 2.9 0.307 2.00 4.5 5.3 0.853 320 6.3 7.2 2/16/82 330 5.9 10.5 0.565 (₹)**19** 64 64 57 50 30 9.6 10.9 0.878 8/27/82 220 220 10.6 10.8 0.987 7.5 8.2 0.917 220 7.6 7.6 7.8 7.8 0.985 9.7 9.7 270 7.4 10.4 0.713 220 4.3 6.3 6.3 6.3 190 190 5.1 5.1 5.3 7.0 7.0 8.6 8.6 73 7/16/82 220 7/6 7/6 9.2 0.822 0.3 3.2 0.3 5.8 6.5 0.895 6.9 6.9 7.3 66 3/18/82 100 3.3 8.6 0.378 180 1.9 5.9 77, 78, 77, 19,782, 250, 9.1, 10.1, 2/10/82 300 14.2 15.4 0.923 330 10.4 11.1 0.942 300 12.0 12.5 0.957 290 12.3 12.3 6/16/85 230 12.5 14.1 0.886 220 5.3 9.2 0.580 3/24/82 160 160 7.9 0.690 0.690 4.8 5.5 0.883 90 3.9 5.3 0.726 180 6.8 2/13/82 330 10.3 11.6 0.887 350 5.5 6.3 NE 3,30,8 190 7.0 7.0 8.1 0.871 5.3 6.2 4.2 4.2 4.2 5.0 0.833 7.0 7.0 7.0 2/12/82 3/12/82 3/12/82 3/12/82 3/12/82 3/12/82 3/10 10.845 0.6464 3/10 10.706 10.7 4/11/8 270 270 7.4 10.4 0.713 220 220 4.3 6.3 87 3/30/82 190 7.0 7.0 8.1 0.871 5.3 6.2 6.2 0.850 190 4.2 5.0 5.0 5.0 5.0 7.0 77 4/17/82 200 16.7 17.1 0.974 200 14.0 14.0 160 5.5 7.9 0.690 170 4.8 5.3 0.726 180 4.8 5.3 0.726 5.3 10.5 0.602 3.10 6.5 0.602 0.602 3.10 6.5 0.602 3.10 6.5 0.602 8.1 77 7/16/82 220 7.6 9.2 0.822 280 0.3 3.2 0.109 101 3/30/82 190 2/25/82 330 18.5 19.3 0.960 330 13.8 14.1 0.980 330 11.5 11.9 8.1 0.871 200 5.3 6.2 0.850 Z.H .973 RATIO DIR (DEG) VEL (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH) VEL (MPH) SPD (MPH) DIR (DEG) VEL (MPH) SPD (MPH) VEL (MPH) SPD (MPH) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) RATIO DIR (DEG) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) SPD (MPH) 59 DATE DIR (DEG) VEL (MPH) DIR (DEG) DIR (DEG) SPD (MPH) SAMPLES 60 Date RATIO RATIO RATIO SITE BRIDGEPORT METEOROLOGICAL SITE MORCESTER METEOROLOGICAL SITE MORCESTER NEMARK BRADLEY NEWARK BRADLEY METEOROLOGICAL SITE BRADLEY BRIDGEPORT METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL SITE SITE METEOROLOGICAL SITE METEOROLOGICAL SITE METEOROLOGICAL METEOROLOGICAL NEW BRITAIN 008 NEW BRITAIN 007 NAUGATUCK 00] TOWN/SITE

TABLE 11, CONTINUED

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH MIND DATA

									UNITS: P	IICROGRAMS	PER CUBI	C METERS
10kg	TOWN/SITE	SAMPLES	=	8	M	\$	រេ	9	^	60	6	10
	METEOROLOGICAL SITE	DIR (DEG)		220	190	190	240		02.5	. 07	Ċ	
	SEPORT	VEL (MPH)	4.2	5.8	10.4	5.5	9 6	9.7	,	9	אר א א	7 7 7 7
		SPD (MPH)		6.5	10.5	5.3	ю. Ю.	10.1	5.6	6.7) e	
		RATIO	0	0.895	0.988	0.956	0.969	0.963	0.368	0.837	0.602	0.80
	METEOROLOGICAL SITE	DIR (DEG)		290	220	230	330	260	310	20	310	230
	MORCESTER	VEL (MPH)		6.9	12.4	7.0	7.1	8.6	2.9	ري. دي	8.1	ru ru
		SPD (MPH)	•	7.3	12.8	8.6	8.2	11.5	7.2	7.9	6.6	6.2
		RATIO	0.822	0.945	996.0	0.811	0.864	0.848	0.410	0.653	0.816	0.896
				SE	7	1	Ų	Maria				
Z	BRITAIN 009	28	7.7	11	75	72	63	3	42	. 04	9	64
		DATE	7/16/82	3/24/82	3/30/82	1/11/82	6/16/82	12/13/82	6/28/82	4/17/82	5/17/82	10/8/82
	METEOROLOGICAL SITE	(DEG)	220	160	190	260	230	330	120	200	702	210
	NEWARK	VEL (MPH)	7.6	ស ស ស	7.0	18.8	12.5	10.3	4.4	16.7	1.7	6.6
		ב ב ב	7.00	6.0		18.8	14.1	11.6	بر ق	17.1	7.3	10.5
	METEOROLOGICAL STTE	C C	770.0	0.690	1.87₽ 202	966.0	0.886	0.887	0.765	976.0	0.229	0.941
	>		0.3) 4 (4	א ני א פ	760	220	045 m	200	200	360	01
		(MPH)	M .2		9	15.1	10	א מ	יי מיכ) 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ა п ⊃ თ	ο. • • •
			0.109	0.883	0.850	0.968	0.580	0.869	0.688	0.975	ے اور اور اور اور	9440
		DIR (DEG)	220	90	190	260	200	340	001	190	210	200
	BRIDGEPORT		8	3.9	4.2	26.3	2.6	8.1	3.7	10.4	6.1	5.5
			6.5	5.3	5.0	56.6	10.1	8.3	4.2	10.5	6.3	5.9
	METEOSOS OCTOR	ĉ	688.0	0.726	0.833	166.0	0.963	696.0	0.890	0.988	0.301	0.934
	METEUROLUGICAL SITE	VEL (MDEG)	062	180	240	250	260	330	230	220	350	09
		MOH	, r	a-n o	, r	12.4	φ, ,	7.1	ហុ	12.4	æ .∺	5.1
		È	7.5 0.945	928	0 822	15.1	11.5	2.2	6.2	12.8	9 0	5.6
					7.00	nez.	0.040	+00·0	9,6	9 . 7 . 7 . 7	0.957	0.912
			3	32		MM.			SE	쀨	7	7
Z Z	NEW HAVEN 002		103	88	62	62	77	74	4 2) r	7.1	69
		DATE	2/16/82	1/29/82	7/16/82	12/13/82	11/ 1/82	5/11/82	3/24/82	3/12/82	3/30/82	12/ 1/82
	METEURULUGICAL SITE	-	330	280	220	330	220	20	160	330	190	80
		SPD (MPH)	הית	, L	۰.۰	10.5	† •	1.7	ון נא ני	1.6	7.0	ر ا ا
			0.565	0.831	0.822	0.887	925	600	6.7	10.0 10.0	1.0 0.7	4. E
		JEG)	340	290	280	350	150	360	170	500	200	200
	BRADLEY		5.3	9.0	0.3	5.5	1.8	3.0	8.4	2.0	N.	2.7
			7.6	10.2	3.5	6.3	2.6	5.8	5.5	6.4	6.2	2.9
			0.700	0.885	0.109	0.869	269.0	0.514	0.883	0.404	0.850	0.945
		DIR (DEG)	310	280	220	340	230	210	06	360	190	220
	BALUGEPORI		6.5	10.0	κ, Θ,	8.1	6.3	1.9	3.9	% 2	4.2	2.3
			20.8	2.11.0	9 6	8.3	6.3	6.3	5.3	5.3	5.0	5.5
	METEO DO 1000 DE 1		0.602	0.893	0.895	0.969	966.0	0.301	0.726	90.10	0.833	0.438
	C	UIN (DEG)) sto	280	2,40	550	280	350	180	10	240	220
	MUNCESIER			14. 14.	1 0	1.7	5.7	 	8.	. 23 8. 1	ب ق آ	4.6
			٠.٥	14.0		20.00	2.7	9.6	5.8	5.5	7.0	6.9
			0.010	0.7/6	U. 745	0.864	0.799	0.937	0.838	0.518	0.822	946

			IABLE	11, CON	INCED						
	1982	1982 TEN HIGHEST	EST 24 HOUR	IR AVERAGE	TSP DAYS	MITH WIND	4D DATA				
				-				UNITS : M	: MICROGRAMS	PER CUBIC METERS	METERS
TOWN/SITE	SAMPLES	H		M	Ť	Ŋ	9	7	Ø	•	01
			(32 (32)	(Sign	7	MK				SE	(3)
NEW HAVEN 013	711	122	c	89	85		85	83	79	75	73
METEOROLOGICAL SITE	DIR (DEG)	30 65 80 80	<u>,</u>	360	Ņ.	330	3/30/82	Ň	220	160	9/11/82 280
NEWARK	VEL (MPH)	2.5		9. 5			7.0		7.6	77. 12.0	5.1
	SPD (FIPD)	0.312		0.739			0.871		9.2	0.690	6.0 0.837
METEOROLOGICAL SITE	DIR (DEG)	280		350			200		280	170	340
BRADLEY	VEL (MPH)	2.5		4.6			 		0 v. v	4-r 60-r	M P
	RATIO	0.258		0.874			9.7 0.850		0.109	0.883	2.7 0.473
METEOROLOGICAL SITE	DIR (DEG)	100		350			190		220	06	250
BRIDGEPORT	SPD (MPH)	W 9		و د رن م	4 r		4. r		ru con	w п	9 i u
	RATIO	0.612		0.921			0.833		0.895	0.726	0.501
METEOROLOGICAL SITE	DIR (DEG)	270		350			240		290	180	330
MORCESIER	SPD (MPH)	% % ⊷		0 F	6.5		2.8		9 N	ஷ ந வ	ი ი დ ა
	RATIO	0.324		0.861			0.822		0.945	0.838	0.471
		/	يمسر	(30)		N.					
NORMALK 001	57	102				2	73	73	73	, 2	69
	DATE	3/30/82	Α.		5/11/82	9/14/82	11/ 1/82	6/28/82	7/16/82	4/11/82	6/16/82
METEOROLOGICAL SITE	DIR (DEG)	190			2,	160	220	120	220	270	230
NEMAKK	SPD (MPH)	⊃ ` ~	ນ ၄ ນີ້ ຍີ່		7.4	ي د د	\$ F.	3 C.	9.6	4 9	12.5 2.5
	RATIO	0.871			0.229	0.651	0.925	0.765	0.822	0.713	0.886
METEOROLOGICAL SITE	DIR (DEG)	200			360	170	150	200	280	220	220
BRADLEY	VEL (MPH)	τυ ω. α			м г 0 с	60 v	∞ ∨ ⊷i ¢	w r rui c	м с м	ė,	rų c
	RATIO	0.850			0.514	0.815	0.697	0.688	0.109	0.685	9.6
METEOROLOGICAL SITE	DIR (DEG)	190			210	100	230	100	220	190	200
BRIDGEPORT	VEL (MPH.)	4. n	W F		ط ر و ر	9 V	6.3	3.7	ເປ . ຜິເ	ri Li	7.6
	RATIO	0.833			0.301	0.779	0.994	0.890	0.895	0.956	10.10
METEOROLOGICAL SITE		240			350	210	280	230	290	230	260
MORCESTER	VEL (MPH)	ທຸກ ໝູ່ເ			 	ֆ ր Ծ ր	 	เก๋	0.0 0.1	7.0	وب آ دن ا
	RATIO	0.822			0.937	0.899	0.799	968.0	0.945	0.811	0.848
		S. S.	ومتسر			(SE		(300) (300)			
NORWALK 005	113	127		821	SOI	105	100	100	98	96	06
	DATE	1/29/82	N	2/10/82	2/16/82	3/15/82	1/26/82	2/13/82	4/20/82	1/11/82	5/20/82
METEOROLOGICAL SITE	DIR (DEG)	580		200	330	320	320	360	170	260	240
NEMAKK	SPD (MPH)	היה		15.4		် လ	4 K	7.5	יי ס טיט	18.8	14.0
	RATIO	0.831		0.923	0.565	0.761	0.988	0.739	0.907	966.0	0.957
METEOROLOGICAL SITE		290	330	330	340	320	310	350	190	260	210
BRADLEY	SPD (MPH)	0.6		4. CE	5.2	œ. °	7.6	γ. α 4: μ	11.8 12.8	- L	7.1
	RATIO	0.885		0.942	0.700	0.846	0.941	0.874	0.973	0.968	0.931

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

								UNITS : M	ITCROGRAMS	PER CUBI	C METERS
TOWN/SITE	SAMPLES	н	, N	м	4	ß	9 ,	7	ω	6	10
METEOROLOGICAL SITE	DIR (DFG)	280	220	002	210	00		ļ	•		
BRIDGEPORT	VEL.	10.0	11.5	12.0	6.5	5 o.	8.0	55C	160	260	230 6 6
	SPD (MPH)	11.2	11.9	12.5	10.8	7.3	8.3	10.4	N N	26.6	2:0
METEOROLOGICAL STTE	RATIO	0.893	0.962	0.957	0.602	0.807	996.0	0.921	0.758	166.0	0.938
	VEI (MDH.)	007 H 7[070	2 20	510	500 5	300	350	220	250	560
24.012.22		14.5	18.7	12.5		· ·	7.5	9 1	10.8	12.4	80
	RATIO	926.0	0.973	0.952	7:7	0 979	0.7	٠.٧	11.6	13.1	æ :
)			2.0	٠. ا	1.731	100.0	4.75t	0.950	0.951
			N. S.	2	1	Ž)			(NE)		N
NORWALK 012	09	100	91	84	82	6,	92	74	74	72)°
TTTO INCIDENTIAL	DATE	11/ 1/82	3/12/82	2/16/82	3/30/82	9/14/82	7/16/82	5/11/82	1/29/82	6/28/82	3/24/82
TELECROLOGICAL SITE		077	550 -	550	190	160	220	70	280	120	160
		t	10.1	7.0.T	0.6	ν. ν. c	9.6	1.7	9. r	4 ·	
	RATIO	0.925	0.845	0.565	0.871	0.651	0.822	0.229	11.5 0 821	5.¢ 7,6π	6.7
METEOROLOGICAL SITE	DIR (DEG)	150	10	340	200	170	280	360	290	2002	170
BRADLEY	VEL (MPH)	1.8	2.0	5.3	5.3	2.8	0.3	3.0	0.6	W W	
	SPD (MPH)	2.6	6.4	7.6	6.2	3.4	3.5	5.8	10.2	5.0	5.5
METEOBOLOGICAL STITE	KALIO DIB CRECI	0.697	404.0	0.700	0.850	0.815	0.109	0.514	0.885	0.688	0.883
BRIDGEDORT	VEI (MDH.)	7 7	0 e 2 e	0T 5	190	100	220	210	280	001	06
	SPD (MPH)	6.3	, rd	10.8	, rd	9 9	ָ פֿרני	, v	7.c	· ·	n ve
	RATIO	966.0	90.70	0.602	0.833	0.779	0.895	0.301	0.893	0.890	0.726
METEOROLOGICAL SITE	DIR	280	10	310	240	210	290	350	280	230	180
MORCESTER		5.7	8 1	8.1	ກ ຄ.	4.9	6.9	8.1	14.5	ત ત	6.8
	SPU (MPH.)	7.2	5.5	6.6	7.0	លុំ	7.3	9.6	14.8	6.2	5.8
	KAITO	6. (s	0.518	0.816	0.822	0.899	0.945	0.937	9.976	968-0	0.838
		3	(32)	>	3	38	SH SH	2		Perf	7
NORMICH 001	58	106	81	81	F	89	19	29	62	19	61
THE CANADA COCCUTATION		2/16/82	2/10/82	1/11/82	1/29/82	4/23/82	9/14/82	2/ 4/82	7/16/82	3/24/82	6/16/82
ME EURULUGICAL SI IR	VEI (MDE)	550 1	3,500	260	280	280	160	320	220	160	230
TOTAL AND I		10.5	15.4	18.8	היה	12.6	יי ת יי כ	y 6	o. ' o	n v	12.5
	RATIO	0.565	0.923	966.0	0.831	0.903	0.651	0.711	0.822	0.690	0.886
METEOROLOGICAL SITE	DIR (DEG)	340	330	260	290	300	170	330	280	170	220
BRADLEY	VEL (MPH)	, 53 5.3	10.4	14.6	9.0	9.9	2.8	5.2	0.3	8.4	5.3
	SPU (MPH)	7.6	11.1	15.1	10.2	7.2	¥.	9.5	3.2	5.5	9.5
METEOBOLOGICAL SITE	RALLO DIECO	0.75	256.0	968	0.885	0.922	0.815	0.567	0.109	0.883	0.580
TE LEGACICAL ST.E.	נשמשט ושא) T <	900	2, 2	280	280	100	310	220	06	200
	SPD (MDH)	. מ	7 t	7 76) c	7:7	9 4	9.0	ر د د	W 1	7.6
	RATIO	0.602	0.957	0.03	7777	7.1	4.0	10.0	0 0 0	7.7	10.1
METEOROLOGICAL SITE	DIR (DEG)	310	290	250	280	280	21.0	200	2000	פיי. פער	260
MORCESTER		8.1	12.3	12.4	14.5	10.8	6.9	. 80	6.9	8.4) G
	SPD (MPH)	6.6	12.9	13.1	14.8	11.1	Z,	10.5	7.3	. rc	, E
	RATIO	0.816	0.952	0.950	0.976	0.978	0,899	n. 787	0.945	83.6	878 0
				1	•	· · · · ·	· · · · · · · · · · · · · · · · · · ·	,	!	,	·

-98-

TABLE 11, CONTINUED

				TT L	II TWOED						
	1982	TEN HIGHEST	IEST 24 HO	UR AVERAGE	E ISP DAY	S MITH MI	ND DATA	4 OF 1181	4100000		
									MICKUSKAMS	PER CUBIC METERS	METERS
TOWNSITE	SAMPLES	H	N	м	&	ru (9	7	00	6	10
					NW	W)		(A)		7	٠
STAMFORD OOI	58	147			128	121		105	96	89	68
METEOROLOGICAL SITE	DATE	6/28/82	N M		1/29/82	3/24/82	N N	6/ 4/82	6/22/82	3/30/82	5/17/82
NEMARK		4.	3 K.	18.8	9.6	5.5 5.5	7.4	10.7	3.1	190 7.0	0 / 1
	SPD (MPH)	5.0 8.0			11.5	7.9		11.9	7.8	8	. v. 7
METEOROLOGICAL SITE	MAILO DIR (DFG)	200			0.831	0.690		0.899	0.395	0.871	0.229
BRADLEY		W S R			0 0 0	0/ ×		٠ ا	200	200	0 0 1 260
		, rd			10.2	i ru o ru		ນ ຄ.	N N	5. 5. 5. 5.	w r
1400 1000 111 1N	RATIO	0			0.885	0.883		0.636	0.571	0.850	0.514
MEIEUMULUGICAL SITE					280	8,		02	100	190	210
	SPD (MPH)	. 2.			11.2	ሳ ቢ ቃ ኦ		10.8	6.4	45 H	4.0
	RATIO	0			0.893	0.726		0.955	0.839	0.833	20.5
METEOROLOGICAL SITE		230			280	180		80	240	240	350
MCKCESIFF	SPD (MD				14. 70. 05	4-1-10 60-0		9.6	.6 .6	. S	e .
	RATIO	0.896			0.976	0.838		0 C	ع م د م د	2 / C	0 00 0 7 0 1 0
		130					1		1	- OF	156.0
A PANTO	Ç			;	\		38			\	7
SIATIONE OC	000	26	ç	82	80	76	71	20	89		63
METEOROLOGICAL SITE	DIR (DEG)	160	Ž.	220	28/05/5 190	78//T/S	78/91/2 220	120/28/82	28/8 701	N	1/11/82
NEMARK	VEL	W.		7.6	7.0	J.7	, ru	4.4	9.6		18.8
	SPD (MPH)	5.0		9.2	8.1	7.3	10.5	5.8	10.5		18.8
METEOBOLOGICAL STEE	RATIO DIE (DEC)	0.651		0.822	0.871	0.229	0.565	0.765	0.941		966.0
BRADLEY BRADLEY		2,4		2 K	א נכ מ	260	540 0 4	200 2 200	016		260
		w .4		, w		ຸທຸ	 	ν τυ υ ο	↑ ¢		9 F
	RATIO	0.815		0.109	0.850	0.514	0.700	0.688	0.963		0.968
MELEUROLOGICAL SITE		700 2		220	190	210	310	100	500		260
	SPD (MPH)	9 49		0 G	, r.	v	סׄכ	. v . v	ป บ่อ		26.3
	RATIO	0.779		0.895	0.833	0.301	0.602	0.890	0.934		0.991
METEOROLOGICAL SITE	ZIO:	210	280	290	240	350	310	230	09	260	250
MORCESIER	SPD (MPH)	3 L		0 r	ν, ν εο ς	m v	φ σ	ហ	יה ע יי		4.4
	RATIO	0.899		0.945	0.822	0.937	0.816	0.896	0.912		15.1 0,950
			garage.		3					1	
STAMFORD 021	57	104		80	1		, K	89		/ r	2
		11/ 1/82	c.i	7/16/82	 M	ςı.	6/16/82	6/28/82	78/4/95	2	3/12/82
METEOROLOGICAL SITE		220		220			230	120	80		330
NEWARK	SPD (MPH)	\$ F.		. o		و. 5 و. ہ	72.5	ক ক	10.7	ස ස ස	1.6
	RATIO	0.925		0.822			0.886	0.765	0.899		0.04.0 24.5
METEOROLOGICAL SITE	DIR	150		280			220	200	2		0 7
BRADLEY	VEL (MPH)	e .					гд (W (សុ	ເບ _ເ ໝໍ ເ		2.0
	SPE CTERS	6.5 0 697		2.5 2.6			9.5	5.0	H . 6		o. %
) 1 1 2	200		^			0.500	000	0.000		\$5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

D DATA	
WITH MIND D	
IGE TSP DAYS MI	
TEN MIGHEST 24 HOUR AVERAGE	
EST 24 HC	
2 TEN MIG	
198	

	7067	LEW MICH	E21 24 HO	UK AVEKAG	I SP DAY	Z HIM	ND DATA	M : STIM	ICROGRAMS	PER CURT	METERS
TOWN/SITE	SAMPLES	rd	N	м	4	ភេ	•	2	හ	6	01
METEOROL OCICAL SITE	OTR (DEG.)	020	5	066	410	000	000	ç	ş	Č	ì
	VEI (MDH)	, (9 4	ក រ ១ ផ	י י י	n O D II	1 C	1 F) ¢	5 P) 0 1
	CHOW) COS	, v	1 d	י סית	ָ פֿ	ត្ត) · C		5. C.	200	w 1
	BATTO) d	200	د و « و «	, to to	, o	1.01	7.0	#1.4	9.0	9 i
METEOROLOGICAL SITE	DIR (DEG)	280			200.5 0.Ex	* C 4	260	0.030			90.7
MORCESTER		5.7		, o	8.1) r	8	ָ ה ה	9 4	200) e
	SPD	7.2	ក	7.3	6	ы	11.5	9	. 60 M	7 F	ក ស្រ
	RATIO	0.799	0.899	0.945	0.816	0.912	0.848	968.0	0.911	0.950	0.518
		3	(3) Z	The state of the s		\		(A)	ALIA	12	2
STRATFORD 005	Ω 6-0	109	107	67	06	80	6		72	*	F
	DATE	2/10/82	2/16/82	1/11/82	11/ 1/82	3/30/82	7/16/82	3/12/82	2/ 4/82	3/24/82	9/14/82
METEOROLOGICAL SITE	DIR (DEG)	300	330	260	220	190	220	330	320	160	160
NEWARK	VEL (MPH)	14.2	ru č e n	18 18 18 18 18	7. 0	. v	9.6	6.6	و. ا و. ر	កា ! ប៉េ (W I
	RATTO	10.0	יין כ טיקי	986	€ 0 0 4 10 4 10	ο ο 1.α	7. ca	5 TO 10		6.7	6.0 5.0
METEOROLOGICAL SITE	DIR (DEG)	330	340	260	150	200	280		330	270	100.0
BRADLEY	VEL (MPH)	10.4	ы. М	14.6	8.1	5.3	M. 0	2.0	ю «	4	, w
	SPD (MPH)	T. T.	7.6	15.1	5.6	6.2	м ы	6.3	9.5	in in	ф. М
	RATIO	0.942	0.700	0.968	0.697	0.850	0.109	404.0	0.567	0.883	0.815
METEUROLOGICAL SITE	DIR (DEG)	300	310	260	230	190	220	360	210	06	100
DATACEPOK	CEL (MPH)	2 C	อ บัต	26.5	9 4	3° L	rJ∧ mori	W F	9.6	φ. M. I	9.
	RATTO	957	204		0 0 0 0 0 0	ع د م م م	η μ ο α	ر رور رور	10.0 40.0	ሳ ነር ሳ ነር ሳ ነር	1 t
METEOROLOGICAL SITE	DIR (DEG)	290	310	250	280	240	0.00	90.	600	2 6 6 6 6	, c
MORCESTER	VEL (MPH)	12.3	8.1	12.4	5.7	ري دي دي	6.9	اري دي دي	о М	8	9.0
	SPD (MPH)	12.9	6.6	13.1	7.2	7.0	7.3	5. 5.	20.5	ري دي	កា
	RATIO	0.952	0.816	0.950	0.799	0.822	0.945	0.518	0.787	0.838	0.899
		Ź			N S FIN	7		(H		MM	
VOLUNTOWN 001	111	92	54	ы М	14 12	44	44	2	24	14	4
	DATE	7/19/82	7/16/82	6/10/82	6/ 4/82	5/26/82	5/11/82	9/14/82	5/14/82	9/11/82	6/28/82
METEOROLOGICAL SITE	DIR (DEG)	250	220	260	8	180	0 1	160	30	280	120
NEWAKK	VEL (MPH)	-1 F	9.0	. .	10.7	W 1	1.7	W I	α, ί α ι	η / Η (ক। ক
	RATIO	0.900	0.822	0.566	0.899	0.503	0.229	0.65	2.0.0 1.841	0.837	0.761
METEOROLOGICAL SITE	DIR (DEG)	210	280	120	20	220	360	170	20	340	200
BRADLEY	VEL (MPH)	4.9	м М	H .	и 8	6.0	3.0	2.8	6.7	M.	w N
	SPD (MPH)	6.5	3.5	n O	F. 1	2.9	ທ. ຜູ້	W .	7.2	2.7	O
	RATIO	0.786,	0.109	0.244 0.000	0.636	0.307	0.514	0.815	0.934	0.473	0.688
TELECROLOGICAL SILE	UIR (DEG)	7 K	022	ج ج	2 0	200	270	007	220	220	100
NO THE PROPERTY OF THE PROPERT	CHOM CON	, r	0 4		0.5	÷ n	L.7	9 V	1 C	, n	· · ·
	RATTO	. 6. 6. 6.	د و ه ن د	9.0	0.41-0 0.05.7	ט אַנאַ אַנאַ		27.0	0 × 0	ם מיה	٠ د د د د د
METEOROLOGICAL SITE	DIR (DEG)	270	290	202	80	320	350	210	, 60 80 80 80 80 80 80 80 80 80 80 80 80 80	330	0.00
MORCESTER		6.7	6.9	4.2	7.6	6.3		9	7.0	, ci	5
	SPD (MPH)	7.9	7.3	7.2	ю М.	7.2	9.0	rv rv	9.	rJ D	6.5
	RATIO	0.843	0.945	0.581	0.911	0.871	0.937	0.899	0.811	0.471	0.896

TABLE 11, CONTINUED

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS MITH MIND DATA
UNITS : MICROGRAMS PER CUBIC METERS

TOLIN	CAMA	þ	c	N	*	i.	•				
		4	J	n (`\ `	n	Đ	•	0	.	2
		7		3	\	SE			(N		(AR)
MALLINGFORD 001	58		83	83	42) 2				99	49
	DATE		7/16/82	2/16/82	4/11/82	3/24/82	AI		Α.	4/17/82	8/ 3/82
METEOROLOGICAL SITE	DIR (DEG)		220	330	270	160		230		200	20
NEWARK	VEL (MPH)		9.0	ក្ស ដ ខ. ក	4.6	ហុក				16.7	0.7
	SATTOTES OF TAX		3.5	ב ה ה ה	7 c	· · · · ·				1.71 0.72	0 Q
METEOROLOGICAL SITE	DIR (DEG)		280	, 5 5 5 6	220	170				200	, (, , , , , , , , , , , , , , , , , ,
300	VEL (MPH)		М.	ιυ ω.	4. W.	æ.				14.0	9.0
	SPD (MPH)		3.5	7.6	6.3	5. 5.				14.4	6.0
	RATIO		0.109	0.700	0.685	0.883				0.975	0.542
METEOROLOGICAL SITE	DIR (DEG)		220	310	190	06				190	130
BRIDGEPORT	VEL (MPH)		ເປ . ຜ :	ه. تن	ر ا	W :				10.4	w 6.
	SPD (MPH)		6.6 7.5	10.8	5.3	5.3				20.5	М
METERBOLOGICAL STTE	RALLO DIP (DEC)		5.0% 5.0%	200.0	926.0	92/.0				0.988 23.0	0.724
œ	VEL (MPH)		, .) r	0.7	9				2 4	, k
	SPD (MPH)		7.3	6.6	8.6	Ф				12.8	9
	RATIO		0.945	0.816	0.811	0.838				996.0	0.645
		SE SE		Man	NE					•	\
	L 7		2	1	<u> </u>	232	· a	ē	7	4	Ļ
	DATE		4/40/82	12/13/82	1/29/82	28/91/2	4/17/82	7/18/82	7/16/82	11	67 LE/3
METEOROLOGICAL SITE	DIR (DEG)		190	330	280	330	2002	100	220	120	270
NEMARK	VEL (MPH)		7.0	10.3	9.6	ы 6.	16.7	M M	7.6	\$	7.4
	SPD (MPH)		80	11.6	11.5	10.5	17.1	9. 9.	9.2	м 8	10.4
	RATIO		0.871	0.887	0.831	0.565	0.974	0.378	0.822	0.765	0.713
MELEURULUGALUAL SITE	VFI (MDH.)		א כ ס א	ט מ מ	0 6 0 C	ָאַ עַ בַּ	9 6) 0 1	9 K	א א מ	0 × 5
	SPD (MPH)		6.2	9	10.2	7.6	14.6	o.	, w	, ru	, w
	RATIO		0.850	0.869	0.885	0.700	0.975	965.0	0.109	0.688	0.685
METEOROLOGICAL SITE	DIR (DEG)		190	340	280	310	190	130	220	100	190
BRIDGEPORT	VEL (MPH)		\$ I	e :	10.0	5	10.4		เม เม	7.7	iù H
	SPU (MPH)		9 (c	, d	11.2	10.8 8.00	10.5	0 0 0 0	o 0	% · 6	ν. Μ. Ι
THE SECTION OF THE	MAILU NTD (AFC)		4.0.0 6.00	220	280.0	200.0	930	000.0	9000	9.836	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£02	VEL CADE		n S) r	7 4 0 4	יר מ	12.60	9 6	9 6	n J J R	7 20
	SPD (MPH)		7.0	8	14.8	0.0	12.8	7.2	7.3	6.2	9.00
	RATIO		0.822	0.864	976.0	0.816	996.0	0.410	0.945	968.0	0.811
		\	1		(M)		SE	>	NE		35
MATERBURY 006	09	123	92	86	28	85	82	62	11	75	89
	DATE	4/11/82	3/30/82	6/22/82	3/24/82	7/16/82	9/14/82	4/11/82	3/ 6/82	10/8/82	2/16/82
METEOROLOGICAL SITE	DIR (DEG)	200	06T	150	160	220	160	270	30	210	330
ZILVAKK	VEL CAPE	16.7) ·	٠, ۱۰ ۱۰	រ រ	• •	งเ	3. 4	9 6	3 C	n o
	מידים	7/1	1 0 C	0 % 0 0 U	6.4	7.6	ט ע עיי	7.7	10.4 0.78	1.00 0.00 0.00 0.00	บา การ
METEOROLOGICAL SITE	DIR (DEG)	200	200	2002	170	280	170	220	100	101	340
-		14.0	5.3	2.1	ф Ю.	0.3	2.8	£.3	5.7	W.9	5.3
	SPD (MPH)	14.4	6.2	3.7	ы Б	3.5	3.6	6.3	6.2	4 0	7.6
	RATIO	0.975	0.850	0.571	0.883	0.109	0.815	0.685	0.919	0.963	0.700
	-										

TABLE 11, CONTINUED

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS WITH WIND DATA

								UNITS : M	ICROGRAMS	PER CUBI	C METERS
TOWNSITE	SAMPLES	Ħ	8	M	ታ	ស	9	7	œ	6	10
METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH)	190 10.4 10.5	190 5.0 5.0	100	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	220 5.8 6.5	3.6	190 5.1	6.6	500 5.5 5.9	310 6.5 10.8
METEOROLOGICAL SITE Morcester		12.4 12.8 0.966	0. 2.0 7.0 8.22 7.0	0.81.6 0.81.6	0.726 180 4.8 5.8 0.838	0.895 290 6.9 7.3 0.945	0.779 210 4.9 5.5 0.899	0.956 230 7.0 8.6 0.811	0.837 50 5.2 7.9 0.653		0.602 310 8.1 9.9 0.816
MATERBURY 007 METEOROLOGICAL SITE NEWARK		2/25/82 330 18.5 19.3	3/24/82 160 160 5.5	3/30/82 190 7.0 8.1	2/13/82 360 9.2 12.5	115 3/18/82 100 3.3 8.6	114 4/11/82 270 7.4	113 4/17/82 200 16.7 17.1	17.29/82 280 280 9.6	~_ ` N	91 7/16/82 220 7.6 9.2
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT		0.980 13.8 14.1 0.980 11.5	0.690 170 4.8 5.5 0.883 3.9	5.3 6.2 0.850 190 4.2	0.739 350 7.4 8.5 0.874 9.5	0.578 180 1.9 5.9 130 2.1	0.713 220 220 6.3 0.685 5.1	0.974 200 14.0 14.4 0.975 190	0.831 290 9.0 10.2 0.885 280 10:0	0.565 240 240 7.6 7.6 210 6.5	0,822 280 0,3 0,109 5,8 5,8
METEOROLOGICAL SITE Morcester	SPD (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	11.9 0.962 320 18.2 18.7 0.973	5.3 0.726 180 4.8 5.8 0.838	5.0 0.833 240 5.8 7.0 0.822	10.4 0.921 350 6.8 7.9 0.861	0.368 310 310 2.9 0.410	5.3 0.956 230 7.0 8.6 0.811	10.5 0.988 220 12.4 12.8 0.966	11.2 0.893 280 14.5 14.8 0.976		6.5 290 290 6.9 7.3
MATERFORD 001 METEOROLOGICAL SITE NEWARK	56 DATE DIR (DEG) (VEL (MPH) SPD (MPH)	81 67 4782 80 10.7 11.9	78 7/16/82 220 7.6 9.2	8/ 3/82 20 20 7.0 9.6	58 11/ 1/82 220 7.4 8.1	56 9/14/82 160 3.3 5.0	55 6/16/82 230 12.5 14.1	53 10/ 8/82 210 9.9 10.5	47 7/10/82 170 2.9 8.8	47 5/17/82 70 1.7 7.3	46 6/28/82 120 4.4 5.8
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT		5.8 5.8 9.1 0.636 70 10.8	0 23.2 2.2 0 2.3 2.2 2.2 2.3 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	2.2 2.2 3.2 3.4 2.8 2.8 2.8 2.8 2.8	0.50 1.8 0.697 230 6.3	0.170 1.70 1.00 1.00 1.60 1.60	220 5.2 9.2 0.580 200 9.7	4. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.22 2.60 2.5.8 2.10 2.10 3.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
METEOROLOGICAL SITE MORCESTER	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.955 80 7.6 8.3 0.911	0.895 290 6.9 7.3 0.945	0.724 50 3.0 4.6 0.645	0.994 280 5.7 7.2 0.799	0.779 210 4.9 5.5 0.899	0.963 260 9.8 11.5 0.848	0.934 60 5.1 5.6 0.912	0.833 290 3.9 5.9 0.670	0.301 350 8.1 8.6 0.937	0.890 230 5.5 6.2 0.896

TABLE 11, CONTINUED

1982 TEN HIGHEST 24 HOUR AVERAGE TSP DAYS MITH WIND DATA

							_		ICROGRAMS	PER CUBIC	METERS
TOWN/SITE	SAMPLES	H (2	м	4	in .	9	7	80	6	10
		S.S.			(35)	W.	1			\	T BE
MILLIMANTIC 002	09	104		72	89	99	49	63	62	9	09
	DATE	2/16/82		5/11/82	2/ 4/82	9/14/82	6/16/82	7/16/82	4/11/82	4/11/82	4/ 5/82
METEOROLOGICAL SITE	DIR (DEG)	330		70	320	160	230	220	200	270	300
NEWARK	(VEL (MPH)	ы Ф.		1.7	6.6	8.8	12.5	7.6	16.7	7.6	15.8
	SPD (MPH)	10.5		7.3	13.9	5.0	14.1	9.2	17.1	10.4	17.7
	RATIO	0.565		0.229	0.711	0.651	0.886	0.822	0.974	0.713	0.895
METEOROLOGICAL SITE	DIR (DEG)	340		360	330	170	220	280	200	220	350
BRADLEY	VEL (MPH)	т. w		3,0	5.2	2.8	5.4	0.3	14.0	1 13	34.6
	SPD (MPH)	7.6		ы 8	9.5	3.4	9.5	7.5	14.4	M.	2. 2.
		00.00		0.514	0.567	0.815	0.580	0.109	0.975	0.685	0.970
METEOROLOGICAL SITE		310		210	310	100	200	220	190	190	060
BRIDGEPORT	. VEL (MPH)	N		P.9	7.6	3.6	9.7	ю 60	10.4	N F	, 60 ru
	SPD (MPH)	10.8		6.3	10.8	9.4	10.1	6.5	10.5	rJ W	(C)
	RATIO	0.602		0.301	0.705	0.779	0.963	0.895	0.988	0.956	0.974
METEOROLOGICAL SITE	DIR (DEG)	310		350	290	210	260	290	220	230	290
MORCESTER	VEL (MPH)	æ 		0	89.	6.3	8.6	6.9	12.4	7.0	60
	SPD (MPH)	6.6		8.6	10.5	ra ra	11.5	7.3	12.8	9) F.
	RATIO	0.816		0.937	0.787	0.899	0.848	0.945	996.0	0.811	0.985

III. SULFUR DIOXIDE

Health Effects

Sulfur oxides are gases that come from the burning of sulfur-containing fuel, mainly coal and oil, and also from the smelting of metals and from certain industrial processes. They have a distinctive odor. Sulfur dioxide (SO₂) comprises about 95 percent of these gases, so scientists use a test for SO₂ alone as a measure of all sulfur oxides.

As the level of sulfur oxides in air increases, there is an obstruction of breathing, a choking effect that doctors call "pulmonary flow resistance." The amount of breathing obstruction has a direct relation to the amount of sulfur compounds in the air. The effect of sulfur pollution is enhanced by the presence of other pollutants, especially particulates and oxidants. That is, the harm from two or more pollutants is more than additive. Each augments the other, and the combined effect is greater than the sum of the parts would be.

Many types of respiratory disease are associated with sulfur oxides: coughs and colds, asthma, bronchitis, and emphysema. Some researchers believe that the harm is mainly due not to the sulfur oxide gases but to other sulfur compounds that accompany the oxides: sulfur acids and sulfate salts.

Conclusions

Sulfur dioxide concentrations in 1982, for the most part, did not approach any federal primary or secondary standards. With the exception of one day at Milford, measured concentrations were substantially below the 365 ug/m³ primary 24-hour standard. All sulfur dioxide monitoring sites were well below the 80 ug/m³ primary annual standard and the 1300 ug/m³ secondary 3-hour standard.

According to the statistical analysis which made use of sulfation rate data, there was a small but statistically significant decrease in SO₂ levels from 1981 to 1982 (see Table 3). However, the analysis based upon continuous SO₂ measurements indicated no change in ambient SO₂ concentrations (see Table 3A). An increase in SO₂ levels was anticipated since fuel-burning sources were allowed to burn 1.0% sulfur oil in 1982 (as compared to the previous 0.5% requirement). Part of this

expected increase in SO₂ emissions may have been offset by lower heating requirements in 1982, as compared to 1981. For instance, meteorological measurements taken at Bridgeport Airport show a 3.85% decrease in the number of degree days from 1981 to 1982. Increased industrial productivity and the more efficient use of fuel may also have decreased emissions. In next year's Air Quality Summary an attempt will be made to address the specific level of SO₂ emissions from year-to-year in order to assess their effect on ambient SO₂ levels.

The continued attainment of SO_2 standards is primarily attributable to Connecticut's sulfur-in-fuel regulation.

Method of Measurement

The DEP Air Monitoring Unit used the pulsed fluorescence method (Teco instruments) to continuously measure sulfur dioxide levels at all 9 sites in 1982.

Discussion of Data

Monitoring Network - Nine continuous SO₂ monitors were used to record data in eight towns during 1982 were (see Figure 5):

Bridgeport 001 Bridgeport 123 Danbury 123 Greenwich 017 Hartford 123 Milford 002 New Haven 123 Stamford 123 Waterbury 123

All of these sites telemetered the data to the central computer in Hartford on a real-time basis.

Precision and Accuracy - 151 precision checks were made on SO₂ monitors in 1982, yielding 95% probability limits ranging from -10% to +5%. Accuracy is determined by introducing a known amount of SO₂ into each of the monitors. Three different concentration levels are tested: low, medium, and high. The resulting 95% probability limits were: low, -8% to +4%; medium, -8% to +3%; and high, -8% to +6%.

Annual Averages - SO₂ levels were below the primary annual standard of 80 ug/m^3 at all sites in 1982 (see Table 12). The annual average SO₂ levels decreased at five of the nine monitoring sites from 1981 to 1982. Danbury 123 and Waterbury 123 showed decreases of more than 5 ug/m^3 . Four monitoring sites showed increased annual averages. Only Greenwich 017 increased by more than 5 ug/m^3 , but Greenwich 017 only operated for the last half of 1981.

Statistical Projections - A statistical analysis of the sulfur dioxide data is presented in Table 13. This analysis provides information to compensate for any loss of data caused by instrumentation problems. The format of Table 13 is the same as that used to present the total suspended particulate annual averages (see Table 6). However, Table 13 gives the annual arithmetic mean of the valid 24-hour SO₂ averages to allow direct comparison to the annual SO₂ standards. The 95% limits and standard deviations are also arithmetic calculations. Since the distribution of the SO₂ data tends to be lognormal, the geometric means and standard deviations were used to predict the number of days the 24-hour standard of 365 ug/m³ would be exceeded at each site if sampling had been conducted every day.

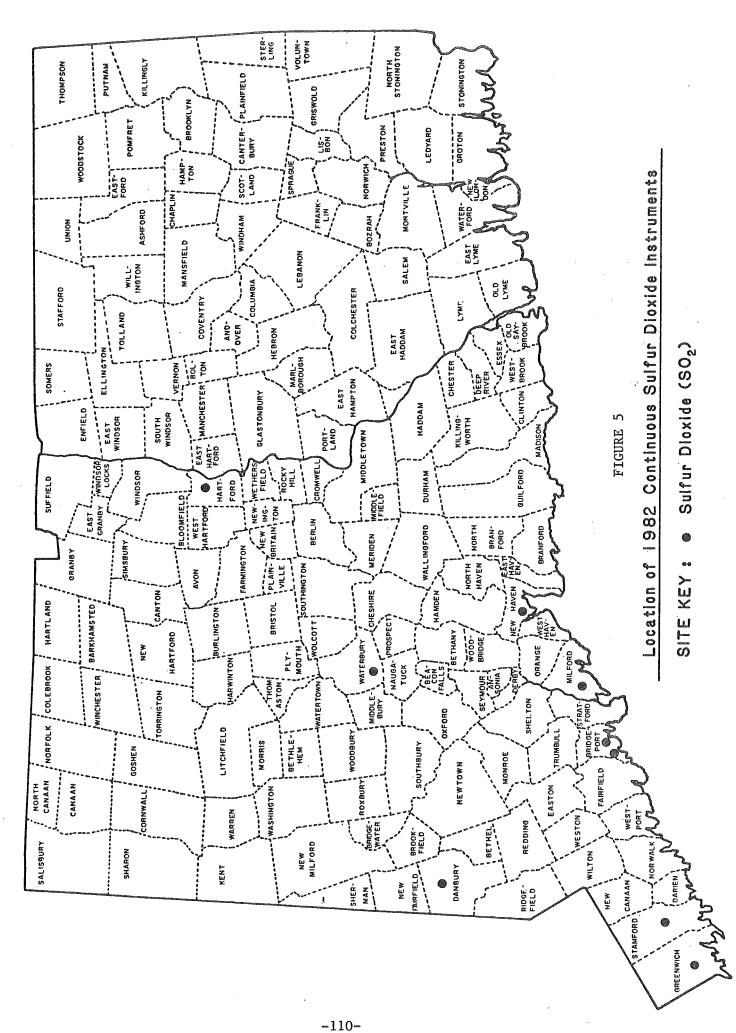
It is important to note that these statistical tests require random data to be valid. This means that an equal number of samples must be collected in each season of the year and on each day of the week. The distribution and quantity of SO₂ data were better in 1982 than in 1981. The data indicate with reasonable assurance that there were no violations of the primary SO₂ standard in Connecticut. For example, a statistical prediction of one day exceeding the primary 24-hour standard (365 ug/m³) at Hartford site 123 would indicate that an increase in SO₂ emissions there might jeopardize the attainment of this standard. Two days over the standard are required for the standard to be violated.

24-Hour Averages - Table 14 presents the 1st and 2nd high 24-hour concentrations recorded at each monitoring site. In 1982 no sites recorded SO₂ levels in excess of the 24-hour primary standard of 365 ug/m³. Second high running 24-hour average concentrations decreased at seven of the nine SO₂ monitoring sites during 1982. The decrease was greater than 50 ug/m³ at three sites: Bridgeport 001 (53 ug/m³), Hartford 123 (53 ug/m³), and Milford 002 (93 ug/m³). Only two sites had higher second high running 24-hour average concentrations in 1982 when compared to 1981. One of these sites was Waterbury 123 which increased only 4 ug/m³, and the other was Greenwich 017 which increased by 54 ug/m³. The increase at Greenwich 017 is not truly representative since the site operated for only the last half of 1981.

Current EPA policy bases compliance with the primary 24-hour SO₂ standard on non-overlapping running averages. Running averages are averages computed for the 24-hour periods ending at every hour. Assessment of compliance is based on the value of the 2nd highest of the two highest non-overlapping 24-hour periods in the year. Thus, the basis for compliance is the magnitude of the exposure encountered within any two distinct 24-hour periods, not

calendar days. However, there is some contention that compliance assessment for 24-hour SO_2 standards should be based on calendar day averages only. Table 15 contains the maximum 24-hour SO_2 readings from both the running averages and the calendar day averages for comparison. The maximum calendar day readings are roughly 10% lower than the maximum readings from the running averages.

3-Hour Averages - Table 16 presents the 1st and 2nd high 3-hour concentrations recorded at each monitoring site. Measured SO₂ concentrations were far below the federal secondary 3-hour standard of 1300 ug/m³ at all DEP monitoring sites in 1982. When compared to 1981, the second high running 3-hour average concentrations decreased at six sites and increased at 3 sites in 1982.


 $10{\rm -High}$ Days with Wind Data - Table 17 lists the ten highest 24-hour calendar day SO2 averages and the dates of occurrence for each SO2 site in Connecticut during 1982. The table also shows the average wind conditions that occurred on each of these dates. (The origin and use of these wind data are described in the discussion of Table 11 in the TSP section of this Air Quality Summary.)

Once again, as with TSP, most of the highest SO₂ days occur during periods of persistent southwesterly winds. This relationship is caused, at least in part, by SO₂ transport; but, any transport is limited by the chemical instability of SO₂. In the atmosphere, SO₂ reacts with other gases to produce, among other things, sulfate particulates; so SO₂ is not likely to be transported very long distances. Previous studies conducted by the DEP have shown that during periods of southwest winds, levels of SO₂ in Connecticut decrease with distance from the New York City metropolitan area. This relationship tends to support the transport hypothesis. On the other hand, these studies also revealed that certain meteorological parameters, most notably mixing height and wind speed, are more conducive to high SO₂ levels on days when there are southwesterly winds than on other days.

The data in Table 17 was used to make a tally, by date, of the frequency of occurrence of high SO₂ levels. If a given date recurred at 5 or more sites in this tally, the SO₂ levels and meteorological conditions were investigated further (there were 7 such days). A close look at these 7 days revealed three important points. First, all 7 days occurred during the winter months. This can be attributed to more fuel being burned during the cold weather. Second, 4 of the 7 days had persistent southwest winds for that calendar day. Third, the other 3 days had either persistent southwest winds for the previous 24 hours or the wind was calm on the day the high SO₂ reading was recorded.

Most of the sites recorded their highest SO₂ levels during the month of January. The month of January was extremely cold, creating an increase in fuel consumption for heating. The increase in fuel consumption alone could account for the higher SO₂ levels, but the frequent occurrence of southwesterly winds on these days indicates that transport adds to the problem.

In summary, high levels of SO2 in Connecticut seem to be caused by a number of related factors. First, Connecticut experiences its highest SO2 levels during the winter months, when there is an increased amount of fuel combustion. Second, the New York City metropolitan area, a large emission source, is located to the southwest of Connecticut and, in this region, southwest winds occur relatively often in comparison to other wind directions. Also, adverse meteorological conditions are often associated with southwest winds. The net effect is that during the winter months when a persistent southwesterly wind occurs, an air mass picks up increased amounts of SO2 over the New York this metropolitan area and transports Connecticut. Here, the SO₂ levels remain high because the relatively low mixing heights associated with the southwest wind will not allow much vertical mixing. The levels of transported SO₂ eventually decline with increasing distance from New York City, as the SO2 is dispersed and as it slowly reacts to produce sulfate particulates. These sulfate particulates may fall to the ground in either a dry state (dry deposition) or in a wet state after combination with water droplets (wet deposition or "acid rain").

TABLE 12

1982 ANNUAL ARITHMETIC AVERAGES* OF SULFUR DIOXIDE

AT SITES WITH CONTINUOUS MONITORS

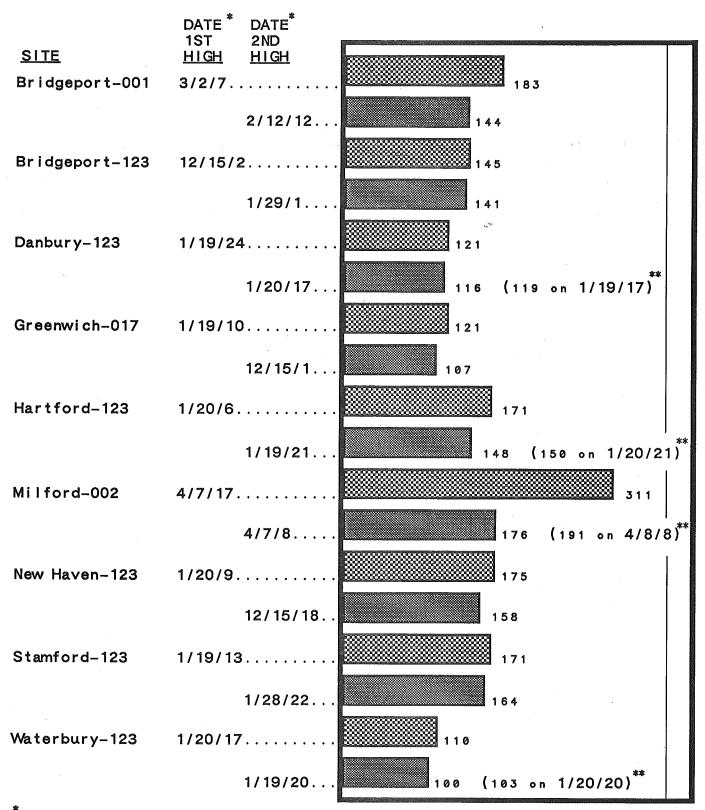
(PRIMARY NAAQS: 80 ug/m3)

TOWN	SITE NAME	1982 ANNUAL AVERAGE
Bridgeport-001	City Hall	29-31
Bridgeport-123	Hallett Street	37
Danbury-123	Western CT State College	1820
Greenwich-017	Greenwich Point Park	18 21
Hartford-123	State Office Building	34 34
Milford-002	Devon Community Center	37
New Haven-123	State Street	31 32
Stamford-123	Health Department	. 29 31
Waterbury-123	Bank Street	18-21

^{*} The annual averages are expressed in terms of the arithmetic mean because the primary ambient air quality standard for SO2 is defined as the annual arithmetic mean concentration. This differs from the trend analysis presented earlier which made use of the annual geometric mean.

ABLE 13

1982 Sulfur Dioxide Annual Averages and Statistical Projections


Arithmetic 95-PCT-Limits Mean Lower Upper
37.0 37
19.8 20
20.5
35.1
36.9
33.4
31.0
20.5

* Sampling not random or of insufficient size for representative annual statistics

The annual averages in Table 13 vary slightly from those in Table 12 because of the manner in which they were derived. Table 12 contains the annual averages of all the available hourly readings. Table 13 contains the annual averages of all the valid 24-hour averages. (At least 18 hours of valid data are required to produce a valid 24-hour average.)

hosely working

1982 MAXIMUM 24-HOUR RUNNING AVERAGE SULFUR DIOXIDE CONCENTRATIONS

Date is month/day/ending hour of occurrence
Non-overlapping maximum

2ND HIGH, ug/m3

365 PRIMARY STANDARD

TABLE 15

COMPARISONS OF 1982 FIRST AND SECOND HIGH RUNNING AND CALENDAR DAY 24-HOUR SO2 AVERAGES units = ug/m3

Site	1st High Running Avg.	1st High <u>Calendar Day</u>	2nd High Running Avg.	2nd High <u>Calendar Day</u>
Bridgeport-001	183	182	144	137
Bridgeport-123	145	141	141	140
Danbury-123	121	121	116	101
Greenwich-017	121	106	107	102
Hartford-123	17 1	156	148	139
Milford-002	311	228	176	156
New Haven-123	175	143	158	141
Stamford-123	171	159	164	152
Waterbury-123	110	108	100	92

1982 MAXIMUM RUNNING 3-HOUR SULFUR DIOXIDE CONCENTRATIONS

							2) & 40-5		
	457	410 vs 295	288 (5 23)	158 (192 on 1/19/8) vs 722	156 vs kD	212 15 230	511 (734 on 4/7/12	247 VS 308	148 (73) 136 (73)
DATE * DATE * 1ST 2ND HIGH HIGH	3/1/21	3/1/18	1/19/9	1/19/6	1/13/16	1/20/5	4/7/9	1/30/9	1/20/11
SITE	Bridgeport-001	Bridgeport-123	Danbury-123	Greenwich-017	Hartford-123	Milford-002	New Haven-123	Stamford-123	Waterbury-123

^{*} Date is month/day/ending hour of occurrence
** Non-overlapping maximum

1300 SECONDARY STANDARD

> 🔀 1ST HIGH , ug/m³ 2ND HIGH , ug/m³

1982 TEN HIGHEST 24-HOUR AVERAGE SOZ DAYS WITH WIND DATA

IC METER	01		on on	0	930	•	. ო	32	٠.	•	0	O	•	ဖ	0	ກ	•	0.848			50	330	•		ന	2		တ်	0	10 10 10 10 10	 · N	ന		o	đ	63) (C	2		<u>.</u>	œ	-		0.941	•
IS PER CUBI	თ	/	101	S	220 9		• 4	23	٠	•	S	0	•	- 1	\circ	")	•		1		707	250		.	9	S	•	α	ကျ	א מ	 96	27	•	<u>.</u>	S)			20	•	•	ന	0	•	0.00)
MICROGRAMS	ω		0	-	280 8		• თ	28		٠	7	9	•	œ i	4 4	0	•	0.953	\);	4 (1/16/82	٠.	• •	7	-	•	<u>.</u>	4 (O 17	 Ö	Ō	-	o (~	76	2/ 9/82	180	•	ø.	-	ທ	٠	0.205	
. STIND	. 1		106	o	150	•	• 4	18		•	9	-	•	ω (- (ת	•	0.078		٠,	114	210.			9	g	•	'n.	4 (າງ	 ~	Ω	•	χ (ω	7 0	- ഗ	210	•	6.	9	ത	•	0.943	
4000	9		107	1/19/82		•	· Ó	0	•	٠	ത	6	٠	4.	- (2	•	0.903		•	ດ `	10 10			9	0	•	- (o 0	0 62 6	 ~	0		7.	0	ă) (V	260	•	7.	0	~	•	0.447	•
X	ស		109	CV	250	•	. 0	~		•	4	a	•	7	n o	π	•	• 4	1) (y -	190		•	Œ		•	'n	σ	>	 α	2	٠	ο α	_	, e	. ග	40,		<u>ი</u>	^	~		0.545	
2	4	\	118	ω (220 220		S	О	•	٠	ო (23	ดี.	2.5	o c	າ	· -	96	1	<i>)</i> (V	220	•	•	က	0	٠	, c	n c	7 7	 9	ന	•	ה כ	4	\ 68	12/14/82	50	٠	ດ	on ∙	თ	•	0.961))
	ო		S	SO .	7 4 5 8		9	O	•	٠	4	m		0 0	~ u	3	• '	00	\	ຸ ເ	2 0			•	4	O)	•	4 (2 U	າ .	 g	9	•	. 0	α		ω	S	•	10.	o.	0		0.939	•
	8	\	137	4 (9.1		თ	O	٠	۲.	9	24	•		n u	n	•	· α	1	, <	1/28/82	220	•	•	S	0	٠	ģ (n c	12.0	 ω	ო	٠	- 6	٥	101	0	ო		-	ო .	a	•	608.0	,
	-			ઌૼ														0.468	\	141	12/1	22								12.3					0.000	121	-		3.7	(·			69.0	
	SITE SAMPLES		1 360	DATE	VEL	SPD	RATI		VEL	SPD (MPH)	I A I	מוא (חופה)	א ני ני		משני מוני		SPD	-		23 250	,	DIR	VEL	SPD	RATIO	DIR (DEG)	VEL (MPH)			VE'	RATIC	DIR (DEG)	SEL (MPH)	ءِ ع	_	23 360	ρA	DIR	VEL	SPD (MPH)	I A I	א בי		RATIO	
				METEOBOLOGICAL SITE	Z			METEOROLOGICAL SITE	BRADLEY		4440	METECACIONICAL SITE	DAT DOUBLING		METEORDIOGICAL SITE	MORCESTER				•	-	METEOROLOGICAL SITE	NEWARK	-		MEIEUROLOGICAL SITE	BRADLET		TIOGICAL SITE	BRIDGEPORT	,	METEUROLOGICAL SITE	を して して して して して して して して して して			÷		METEDROLOGICAL SITE	NEWARK			MEIEUKULUGICAL SIIE	פאטרפ		r
	TOWN NAME		BRIDGEPORT	METEOR				METEORC				שבי בסצו			METEOR					BRIDGEPORT		METEORC			(i	MEIEURC			METEORC			METEURC				DANBURY		METEORC			C C C C C C C C C C C C C C C C C C C	MEICUKL			

1982 TEN HIGHEST 24-HOUR AVERAGE SO2 DAYS WITH WIND DATA

		1 382	15 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	ES1 24-HO	UR AVERAC	E SOZ DAY	S WITH WI	ND DATA	UNITS:	MICROGRAMS	S PER CUBIC	C METER
O V	TOWN NAME SIT	E SAMPLES	-	8	က္	4	ហ	ω	7.	œ	თ	10
æ	METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH)	0 0 0 0	σ.	ო •	4 .	က •	€.	ω.	7	C4 ·	ო •
MET	METEOROLOGICAL SITE WORCESTER	RATIC DIR (DEG) VEL (MPH) SPD (MPH) RATIC	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.82 292 899.0 845.5	0.983 10.7 11.1 0.968	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.769 250 8.6 9.9	0.458 290 6.8 7.2 0.947	0.870 250 8.2 8.3 9.984	0.780 170 3.1 4.0 0.773	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.964 300 7.2 7.8
GREENWICH METE	OROLOGICAL SITE NEWARK	7 360 DATE 1 DIR (DEG) VEL (MPH)	(4 (10 / 19 / 19 / 19 / 19 / 19 / 19 / 19 /	20.00	- 886	22.00	72007	7 200 33 9.	21.7	0 0 4	288. 10.
MET MET	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	CALLO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.004400 0.00000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 0.0000 0.0000 0.0000 0.0000		0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 7.4.4.0 9.00.00 0.00.000
MET HARTFORD	EOROLOGICAL SITE WORCESTER	SPD SPD SPD	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· / 0 · · 0 @	· · · · · · · · · · · · · · · · · · ·	· 00 4 · · 41 , 41	νοαο-ο ·αω··ο,α	· NO 0 · · 4 · 9	· 4 0 0 · · 4) -	- w· · w -	. 95 6	.40 · · r
MET	EOROLOGICAL SITE NEWARK EOROLOGICAL SITE BRADLEY	O DIR VEL RATI ODIR	1/19/82 3.7 6.6 0.566 100	, pa • • • • • •	10- 00 .	144.000.	1100 · · 440 ·	\bullet on \bullet . \bullet or	.04	. 40 60	1/13/82 20 20 8.1 8.9 0.907 360	12 - 12 00
MET	EOROLOGICAL SITE BRIDGEPORT EOROLOGICAL SITE WORCESTER	SPD (MPH) RATIC DIR (DEG) SPD (MPH) SPD (MPH) RATIC DIR (DEG) VEL (MPH) SPD (MPH) RATIC	0.00 0.00 0.42 0.44 0.00 0.00 0.00 0.00	0 0 0 86.9 0 0 82.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.90.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0	7.5 0.927 200 3.6 7.0 0.509 230 8.9	6.8 0.939 12.2 12.2 12.2 0.983 10.7 10.7	0.545 230 230 12.55 0.769 8.6 8.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.3 0.996 8.0 10.2 0.788 3.7 7.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
		•							24			

	7861	בסו שו אין	ES 24-HU	UR AVERAG	E SUZ DAY	S WITH WI	ND DATA	: STINŲ	MICROGRAMS	S PER CUBI	IC METER
TOWN NAME SI	SITE SAMPLES	-	Ø	ო	4	ம	9	2	00	თ	0
						>		••			•
MILFORD	2 357	234	156	49	4	36	ß	13	28	ß	120
METEOROLOGICAL SITE	DIR	4	1/19/82	<-	0 %	∞ α	4/ 6/82	S	04	20	രഥ
NEWARK	VEL					•		•	•		•
	SPD (MPH) RATIO		٠ ن	• 9	• (7)	• ac	19.7	დ	. [• 4	
METEOROLOGICAL SITE	DIR		2	34	32	23	}		2	32	
BRADLE			•	•	٠	•	•	•	٠	•	
	RATI	0.996	0.693	0.940	608.0	0.813	0.857	0.980	0.545	0.980	9.5
METEOROLOGICAL SITE	OIR F		O	3.3	Ø.	~	~ (33	ന	n	ന
מאומפייטא	SPD (MPH)						13.1				
	RATI		7	S	CV	9	7.4	96	76	g	ത
METEOROLOGICAL SITE WORCESTER	DIR (DEG)		0	0	თ	9	_	ж а	ഗ	- -	2
	SPD	101			0		, œ			4	
	RATIC	966.0	0	7	4	9	0	2	~	<u>ر</u> ما	7
NEW HAVEN	123 359	143	4	134	134	131	٠, -	0	101	/ 6	
	·		. 0	S	4	~	. 0	2	2/11/82	ω	2/ 6/82
METEOROLOGICAL SITE			ന	2.	a	α	CI	26	ဏ	52.	ا
Z L M A Z L	V E L			٠	•	٠	٠	•	•	•	•
	RATI		. ო	• 9	- თ	• 4	• ო	• 💿	.6	- 8	83.
METEOROLOGICAL SITE	DIR		S	ത	ത	S	0	7	ထ	S	C
BRADLE	Y VEL (MPH)	() () () ()	•	•	•	•	•	•	•	•	•
	RATIO	0.939	. 0	• 4	• (O	. 0	· 10	• 4	. ~	• m	. თ
METEOROLOGICAL SITE	DIR (DEC	3) 230	ത	23	4	25	CA	32	26	26	29
BRIDGEPOR	RT VEL (MPH) 1	10.2	5.7	ກີທີ່	12.3	o .	- ი	ა. მ.	ເດ ເກົດ	12.6	α. c.
	RATIO	0.983	. 0	٠.	• m	• O	• છ	· rO	• 4	96	. 4
METEOROLOGICAL SITE	DIR (DEC	230	თ	Ŋ	ഗ	Ġ	ന	ത	9	~	ထာ
_	SPD (MPH)	10.7									
	RATIO	96.0	4	α	0.983	α	4	4	S	S	a
STAMEDRO	103 357		Ľ	/ 6	30	1-6	, с		_ y +	, and	/01
		1/28/82	1/19/82	1/16/82	12/14/82	12/15/82	1/18/82	1/ 6/82	1/30/82	2/15/82	11/17/82
METEOROLOGICAL SITE	0 I P		-	4	70	Ψ-	S	N	C4	N	N
	SPD	-			- c.						
	RATI	o	0.566	0.878	0.993	9			က	4 (0.742
MEIEUKULUGICAL SIIE	3 2	N (0	_	190	co -	n	-	O	7)	ກ
מאאטרוב	S PD				9.0						. 4
	RATIO	0.0	က	4	0.961	4	-	O	S)	3	0

1982 TEN HIGHEST 24-HOUR AVERAGE SO2 DAYS WITH WIND DATA

	200	JOSE IEN HIGH	ES 24-HU	24-HOUR AVERAGE	SUZ DAYS	I N	WIND DAIA				
								. STIND	MICROGRAMS	S PER CUBIC	C METER
TOWN NAME SI	SITE SAMPLES	· -	a	ო	4	ru	ဖ	7	œ	σ	10
net of the contract of the con	6	o o		(,		-		
TELL CACCOSTON STATE		05.5	290	ກ	4	230	270	210	220	200	250
BRIDGEPURI	> - - -	12.2	5.0		12.3	5.0	10.6	6.8	6.1	9.e	ი ი
	MPH)	12.4	4.2	•	12.8	5.8	10.9	8	e, e	7.0	3.0
	C)	0.983	0.478	മ	0.959	0.870	996.0	0.810	0.565	0.509	966.0
METEOROLOGICAL SITE	DIR (DEG)	230	300	250	S	250	260	230	230	230	260
WORCESTER	VEL	10.7	6.5		8.2	8.2	9.1	0.9	6.9	6.8	7.8
		11.1	7.2	•	8.3	8.3	9.D	6.5	9.6	10.2	7.9
	RATIO	996.0	0.903	0.870	0.983	0.984	0.964	0.921	0.947	0.877	0.984
			É		\	\	1				
WATERBURY	123 360	108	92	87	86	73	73	67	62	29	57
		1/19/82	12/15/82	1/20/82	12/14/82	1/28/82	1/16/82	2/12/82	3/11/82	1/13/82	1/23/82
METEOROLOGICAL SITE	DIR (DEG)	0	210	330	220	220	240	260	20	20	120
NEWARK	VEL	3.7	4.8	9.5	- 6	9.7	8.0	2.4	3.7	8.1	9.e
	IPH)		6.3	11.1	9.5	10.2	9.1	7.9	6.2	6.8	12.1
		0.566	0.765	m	0.993	0.951	0.878	0.305	0.593	0.907	0.324
METEOROLOGICAL SITE	DIR (DEG)	100	190	320	190	200	210	270		360	10
BRADLEY	VEL	0.8	4.9		6.8	6.3	 	1.7	თ. ღ	4.3	9.9
	(PH)		ທ່		7.0	6.8	5.6	3.7	4.2	4 .3	8.9
	RATIC	0.693	0.943	\circ	0.961	0.939	0.545	0.447	0.933	966.0	0.980
METEOROLOGICAL SITE		290	230	$\mathbf{\sigma}$	240	230	230	320	120	20	70
BRIDGEPORT	VEL (MPH)	5.0	5.0		12.3	12.2	9.6	3.6	1.0	0.8	4.6
	(PH)	4.2	ъ. 8	6.9	12.8	12.4	12.5	7.8	4.2	10.2	10.8
	RATIO	0.478	0.870	\sim	0.959	0.983	0.769	0.458	0.243	0.788	0.426
METEOROLOGICAL SITE	DIR	300	250	The second	250	230	250	290	200	340	50
WORCESTER	VEL	6.5	8.3	8.0	8.5	10.7	8.6	6.8	8.4	3.7	4.8
	SPD (MPH)	7.2	8.3		8.3	11.1	6.6	7.2	8.8	7.0	6.9
	RATIO	0.903	0.984	0.848	0.983	0.968	0.870	0.947	0.955	0.527	0.751

24/2

IV. OZONE

Health Effects

Ozone is a poisonous form of pure oxygen and the principal component of modern smog. Until recently EPA called this type of pollution "photochemical oxidants." The name has been changed to ozone because ozone is the only oxidant actually measured and it is by far the most plentiful.

Ozone and other oxidants -- including peroxyacetal nitrates (PAN), formaldehydes, and peroxides -- are not emitted into the air directly. They are formed by chemical reactions in the air from two other pollutants: hydrocarbons and nitrogen oxides. Energy from sunlight is needed for these chemical reactions, hence the term photochemical smog and the daily variation in ozone levels, increasing during the day and decreasing at night.

Ozone is a pungent-smelling, faintly bluish gas. It irritates the mucous membranes of the respiratory system, causing coughing, choking and impaired lung function. It aggravates chronic respiratory diseases like asthma and bronchitis and is believed capable of hastening the death, by pneumonia, of persons in already weakened health. PAN and the other oxidants that accompany ozone are powerful eye irritants.

Conclusions

As in past years, Connecticut experienced very high concentrations of ozone in the summer months of 1982. Levels in excess of the one-hour NAAQS of 0.12 ppm were frequently recorded at each of the eleven monitored sites. But sites experiencing levels greater than 0.20 ppm were down to four (4) in 1982, as opposed to six sites in 1981. The second highest one-hour concentration decreased at seven sites and increased at four sites.

The incidence of ozone levels in excess of the 1-hour 0.12 ppm standard increased from 1981 to 1982 (see Table 19). There was a total of 357 exceedances in 1981 and 463 in 1982 at those monitored sites that operated in both years. This represents a rise in the frequency of such exceedances from 8.3 per 1000 sampling hours in 1981 to 10.2 per 1000 sampling hours in 1982: a 23% increase. If one eliminates the duplication that results when two or more sites experience an exceedance in the same hour, then the number of exceedances increased from 173 to 186. On this basis the state saw only a 2.5% increase in the frequency of hourly exceedances of the standard.

The number of days on which the same ozone monitors experienced ozone levels in excess of the 1-hour standard increased only slightly from 135 days in 1981 to 139 days in 1982 (see Table 18). However, this represents a drop in the frequency of such occurrences from 7.48 per 100 sampling days in 1981 to 7.34 per 100 sampling days in 1982: a 1.9% decrease. And if one eliminates the duplication that results when two or more sites experience an exceedance on the same day, then the number of exceedances increased from 33 to 37. On this basis the state saw a 6.6% rise in the frequency of daily exceedances of the standard.

The yearly changes in ozone concentrations can be attributed to year-to-year variations in regional weather conditions, especially wind direction, temperature, and amount of sunlight. The larger portion of the peak ozone concentrations in Connecticut is caused by the transport of ozone and/or precursors (i.e., hydrocarbons and nitrogen oxides) from the New York City area and other points to the west and southwest. The percentage of southwest winds during the "ozone season" remained about the same from 1981 to 1982, as is shown by the wind roses from Newark (Figures 9 and 10). The wind roses from Bradley (Figures 7 and 8) are not as representative, since the airport is located in the Connecticut River Valley and the wind gets channeled up or down The magnitude of the high ozone levels can be the valley. associated with yearly variations in temperature. production is greatest at high temperatures and in sunlight. The summer season's daily high temperatures were about the same in 1982 and 1981. This is shown by the number of days exceeding 90°F which increased from four in 1981 to five in 1982 at Sikorsky Airport in Bridgeport. At Bradley International Airport, the number of days exceeding $90^{\circ}F$ decreased from 13 in 1981 to 11 in 1982. The percentage of possible sunshine, at Bradley, reached 80% for the month of July in 1982. The average for the summer months at Bradley is about 60%. This large percentage of possible sunshine stands out as the meteorological parameter which increased dramatically in 1982 over 1981.

Method of Measurement

The DEP Air Monitoring Unit uses chemiluminescent instruments to measure and record instantaneous concentrations of ozone continuously by means of a fluorescent technique. Properly calibrated, these instruments are shown to be remarkably reliable and stable.

Discussion of Data

Monitoring Network - In order to gather information which will further the understanding of ozone production and transport, and to provide real-time data for the daily Pollutant Standards Index, DEP operated a state-wide ozone monitoring network consisting of four types of sites in 1982 (see Figure 6):

Urban - Bridgeport, East Hartford, Middletown,

New Britain, New Haven

Advection from

Southwest - Danbury, Greenwich

Suburban - Groton, Madison, Stratford

Rural - Stafford

Precision and Accuracy - The ozone monitors had a total of 105 precision checks during 1982. The resulting 95% probability limits were -8% to +8%. Accuracy is determined by introducing a known amount of ozone into each of the monitors. Three different concentration levels are tested: low, medium, and high. The 95% probability limits were: low, -5% to +5%; medium, -5% to +2%; and high, -7% to +5%.

NAAQS - On February 8, 1979 the EPA established an ambient air quality standard for ozone of 0.12 ppm for a one-hour average. Compliance with this standard is determined by summing the number of days at each monitoring site over a consecutive three-year period when the 1-hour standard is exceeded and then computing the average number of exceedances over this interval. resulting average value is less than or equal to 1.0 (that is, if the fourth highest daily value in a consecutive three-year period is less than or equal to 0.12 ppm) the ozone standard is considered attained at the site. This standard replaces the old photochemical oxidant standard of 0.08 ppm. The definition of the pollutant was changed along with the numerical value of the standard, partly because the instruments used to photochemical oxidants in the air really measure only ozone. Ozone is only one of a group of chemicals which are formed photochemically in the air and called photochemical oxidants. the past, the two terms have often been used interchangeably. This 1982 Air Quality Summary uses the term "ozone" in conjunction with the NAAQS to reflect the changes in both the numerical value of the NAAQS and the definition of the pollutant.

When the EPA changed the one-hour ozone standard from 0.08 ppm to 0.12 ppm, the DEP assumed that a one-hour average of 0.121 ppm would be considered an exceedance. However, the EPA only defines the standard out to two decimal places; so the standard is considered exceeded when a level of 0.13 pm is reached. Since the DEP still measures ozone levels out to three decimal places, any one-hour average ozone reading which equals or is greater than

0.125 ppm will be considered an exceedance of the 0.12 ppm standard. Because of this difference in the interpretation of the ozone standard, ozone data from previous summaries will differ somewhat from this 1982 Air Quality Summary.

l-Hour Average - The l-hour ozone standard was exceeded at all eleven DEP monitoring sites in 1982. The highest l-hour average ozone concentrations were lower in 1982 than in 1981 at six of the sites. Danbury 123 had the largest decrease of 0.07 ppm. The 1st highest hourly average increased at five sites from 1981 to 1982, with Greenwich 017 having the largest increase of 0.062 ppm.

The number of days on which the 1-hour standard was exceeded at each site during the summertime "ozone season" is presented in Table 18. The monthly high ozone concentrations and a tally of the number of times the ozone standard was exceeded are presented in Table 19 for each site. Table 20 shows the year's high and second high concentrations at each site.

10 High Days with Wind Data - Table 21 lists the ten highest 1-hour ozone averages and their dates of occurrence for each ozone site in 1982. The wind data associated with these high readings are also presented. (See the discussion of Table 11 in the TSP section for a description of the origin and use of these wind data.)

Nearly all of the high ozone levels occurred on days with southwesterly winds. This fact comes as no surprise due to a couple of characteristics of a southwest wind blowing over Connecticut. One characteristic of a southwest wind is that, during the summer, it usually accompanies high temperatures and bright sunshine, which are the prime producers of ozone. The other characteristic of a southwest wind is that it will transport a lot of precursor emissions from New York City and other urban areas to the southwest of Connecticut. It is the combination of these factors that often produces unhealthful ozone levels in Connecticut.

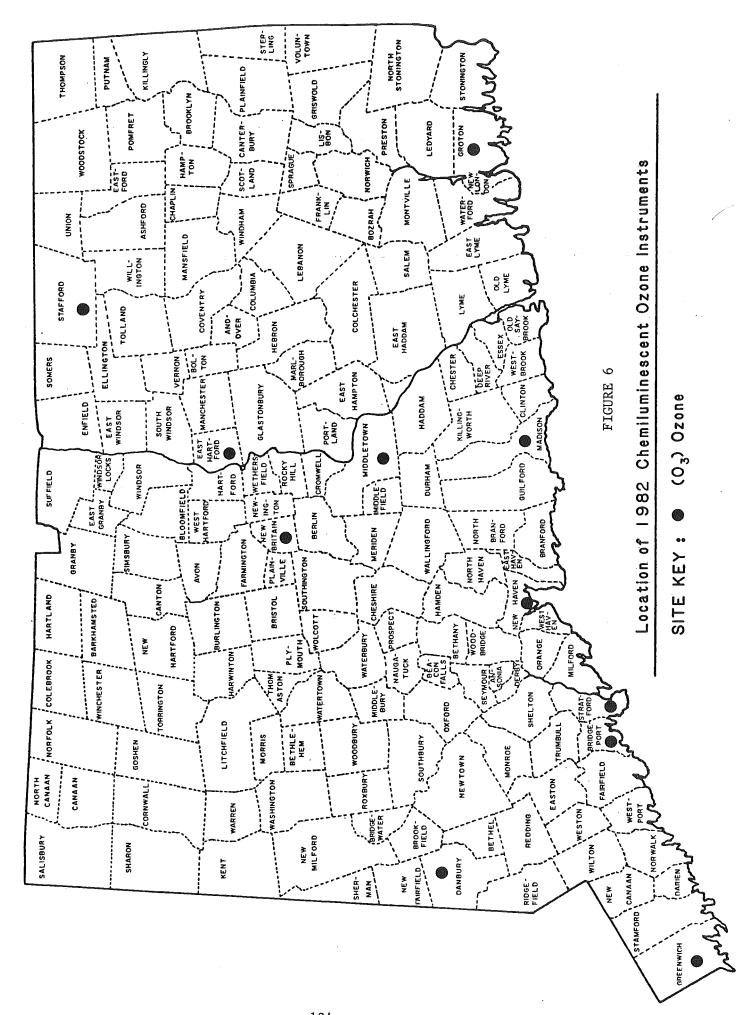


TABLE 18

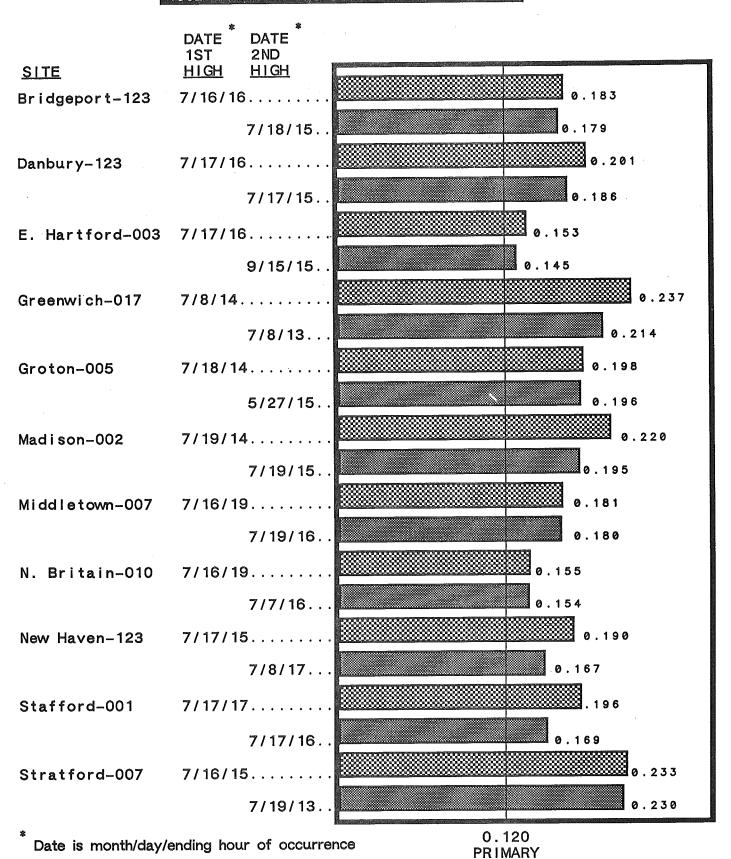
NUMBER OF DAYS ON WHICH THE 1-HOUR OZONE STANDARD WAS EXCEEDED

(>0.12 PPM)

<u>1982</u>

SITE	APRIL	MAY	JUNE	JULY	AUGUST	SEPT.	TOTAL	TOTAL LAST YEAR
				٠				
Bridgeport-123	0	0	1	6	1	1	9	9
Danbury-123	0*	1	2	4	1	1 .	, 9	11
East Hartford-003	0	0	2	3	0	1	6	6
Greenwich-017	0*	3	2	7	1	2	15	18
Groton-005	0*	2	1	9	3	3	18	13
Madison-002	X	1 =	2	7	0*	1	11	12
Middletown-007	0	2	4	10	2	1	19	17
New Britain-010	1*	1	2	5	1	- 1	11	11
New Haven-123	0	1	1	7	0	0	9	6
Stafford-001	X	1	1	8	0	0	10	8
Stratford-007	0	2	3	11	2	4	_22_	_24
				TOTA	L SITE D	AYS	139	135
			TOTAL	INDI	VIDUAL D	AYS	37	33

X No Data AvailableLess than 75% of Data Available


TABLE 19 1982 HIGHEST 1-HOUR OZONE VALUES BY MONTH (PPM)

SITE	APRIL	_MAY_	JUNE	JULY	AUGUST	SEPI.	FXCEEDED	F OF HOURS STANDARD EXCEEDED LAST YEAR
Bridgeport-123	.073	.098	.144	. 183	.159	. 155	30	14
Danbury-123	.063*	.154	.147	.201	. 145	.150	25 24	28
East Hartford — 003	.108	. 102	. 138	. 153	.124	. 145	14	10
Greenwich-017	.101*	. 197	.168	.237	.162	.130	52	63
Groton-005	.070*	.196	.141	.198	.164	.140	6462	40
Madison-002	· X	.162*	.170	.220	.124*	. 133	41	28
Middletown-007	.120	.132	. 150	.181	. 130	.129	47	41
New Britain-010	.126*	.142	.146	.155	.136	.130	26	22
New Haven-123	.100	.132	. 155	.190	.150	.110	35	11
Stafford-001	X	.126	.141	. 196	.120	.117	37	20
Stratford-007	.102	.159	.185	.233	.195	. 175	<u>95</u>	_80
				TOTAL	SITE	HOURS	463	357
			TOTAL	_ INDI\	/IDUAL	HOURS	186	173

X — No data available * <75% of the data available

TABLE 20

1982 MAXIMUM 1-HOUR OZONE CONCENTRATIONS

-127-

🛭 1ST HIGH , ppm

2ND HIGH , ppm

AND

SECONDARY

STANDARD

ABLE 21

		1982	TEN HIGHE	ST 1-HOUR	AVERAGE (OZONE DAY	S WITH WI	ND DATA		. stinu	PARTS PER	MILLION
7	TOWN NAME	SITE SAMPLES	-	N	m	4	ស	9	7	œ	on	10
				7	\	\	>			1	\	1
BRIDGEPOR	PORT	123 201	83	79	76	ທ ^ເ	9	55	44	38	37	(m)
ž	METEOROLOGICAL SITE		220		_ ~	\	\	9/15/82	6/26/82 250		<i>A</i> W	2,0
	NEWARK	VEL	7.6	0		4.6			7.			0
		SPD (MPH)	0.0	0	დ 0	φ,	c	. c	0	. (~ (• (
	METEOROLOGICAL SITE	DIR	280	n a	- 0	t (1)	טוע	ุง เก	ာ တ	3 2	ഗ	9 5
	BRADLEY	VEL	e.0		•							
		SPD (MPH)	0 to	0	ω c	,	φ,	4,	. რ	တ် ဗ	٠. ر	ທີ່ ເ
2	ETEOROLOGICAL SITE		0 0 0 0 0	っっ	9 🕶	ກດ	n c	n (٥-	ກແ	aς	יס פי
	BRIDGEPORT	VEL	5.8		- •		• (٠ (7.4		•
		SPD (MPH)	6.5	φ,	9	ທີ່	9	4	ů.	7	7.	ဖွဲ
42	STAN COLUCTION STAN	RATIC Die (DEC)	0.895 205	(7)	S <	თი	40	r u	თი	თ෦	٧ م	4 n
	MOSCESTER) \ \ \ \ \	0 6 9	ο.	1 .	י מ	r.	ດ່	י ת	•	ο .	n ·
		SPD (MPH)	7.3	•		•			. `•			•
		RATIC	0.945	α	4	S	N	ന	8	4	9	-
2014		(>3	,	1	,	1	1.		٠	,	•
	þ a	123 150	7/17/82	~ u		ກແ		4 ቢ	0.145	4 ቢ	6/28/82	0.124 77 6/89
Z	METEOROLOGICAL SITE	DIR	200	220	200	180	210	220	160	140	120	190
	NEWAR	VEL	8.6	٠	•	•	。	•		•	•	6.6
		SPD (MPH)		ດ	ω .	φ.	= :	თ	7.	ė.	ഗ	on
2	***************************************	RATI	0.876	\sim	LO L	OL L	a	s o	വ വ	വ	യ	0.725
	ū		9 C	α	n	ດ	_	_	O	Э	>	۳ د د د د
		SPD	, m									, o
		RATIC	0.964	0	S	ന	7	9	ത	4	00	996.0
Ž	METEOROLOGICAL SITE BRIDGESORT	018	о С	ď	0	ဖ	က	თ	4	a	0	210
	2014		9.0	•	• 1	•	•	•	•	•		r 0
		RATI	0.958	• ത	· 0	٠,	• 4			· ru	· 0	0.937
¥	METEOROLOGICAL SITE	DIR	240	O	O)	വ	4	7	0	S	က	240
	WORCESTE	VEL	, io	0 1	7.0	0 u		0 r 0 n	4 п ա п	ທຸນ ໝຸດ	ທິດ	ω ċ α ċ
		9-4	0.844	• 4	• 00	- ന	٠ س	• 00	۰ω	. ო	• ຫ	ວ ຫ
						, (1	1			;	
L O WHI	באר - דטאט -	50 € 50 € 50 €	7/17/82	ፈ ແ	n u	ש פי	0 r	Nα	א ער	- (C	- 10	0.117 7/25/89
2	METEDROLOGICAL SITE			180	250	220	210	240	280	220	140	250
	NEWARK	V E	ω (•		•	•	٠	٠	•	.
		SPD (MPH)	•	ω 6	<u>,</u>	თ (<u>+</u> (9.0	ر د ب	o 0	ω .	۰ (س
2	METEOROLOGICAL SITE	4 2 2		N U	ว ฮ	n +	NC	ກເ	n a	Λα	nc	ם ע
Ē	BRADLEY	VEL	V 00	0.0	0.0		9 6	5.7	4.1	. o	4 . 0 .	ν 4 Ο Ο
		SPD	8	4	ო :	ω,	თ	ဖ	7	က်	4	ທີ
		RATIC	တ	ო	ဖ	ဖ	7	ന	ന	0	4	ထ

1982 TEN HIGHEST 1-HOUR AVERAGE OZONE DAYS WITH WIND DATA

	1982	TEN HIGHE	ST 1-HOUR	AVERAGE (GZONE DAY	ONIM HLIM S	ND DATA		: STIND	PARTS PER	MILLION
TOWN NAME SI	ITE SAMPLES	~	Ø	ო	4	ω	g	7	ω	Ø	0
METEOROLOGICAL SITE BRIDGEPORT			1. 4.	5 5 5 5	5.49	427	525	25 1.	0 0 0	4 3	22 7.
METEOROLOGICAL SITE WORCESTER	RATIC DIR (DEG) R VEL (MPH) SPD (MPH) RATIC	0.958 240 7.2 4.3	0.674 150 0.8 5.8 0.132	0.897 290 5.3 6.8 0.785	0.911 270 6.6 7.5 0.882	0.948 9.1 9.6 9.6	0.920 260 8.5 8.5 0.987	0.247 260 6.7 11.2 0.599	0.890 7.90 9.30 5.30	0.000000000000000000000000000000000000	0.978 260 8.6 8.9 0.968
GREENWICH METEOROLOGICAL SITE NEWARK	_	96	20 20 7. 8.	. 18 /16 /22 7.	.18 19 25 10.0	71. 44.00 4.00	22.08	.16 /26 /25 7.	0.244.00	726.7.	4-6-6-6
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	RATIC DIR (DEG) Y VEL (MPH) SPD (MPH) RATIC DIR (DEG)	0.897 250 2.8 6.0 6.0 230	0.859 150 0.7 2.6 200	0 0 2822 200.3 220 820 83	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 220 220 6.3 220 7.20	0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
METEOROLOGICAL SITE WORCESTER	SPD RATI DIR VEL SPD RATI		••••••	\cdot	00 12 4	01/0	· • 10 4 • • 4	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	4	0.651 290 290 6.90 6.90 6.90
GROTON METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE	5 OIR VEL SPD RATI DIR	96 0	$0.00 \cdot 0.00$	> L O to O L	/ (0 (0 4 · · 4 to)	00	$0.00 \cdot \cdot \cdot 0.00$	00 400	ALOD (0 • • O) (0	/4 N N · · O N	~ M · · · · · · · · · · · · · · · · · ·
BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	Y VEL (MPH) SPD (MPH) RATIO DIR (DEG) SPD (MPH) SPD (MPH) RATIO REL (MPH) SPD (MPH) RATIO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.255 2.20 2.20 2.20 2.20 3.3.1 3.3.1 0.7 0.7 0.7 0.087	0.00.00 7.386 7.74 7.74 0.9933 0.9933 0.9933 0.9933	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.0 6.30 6.30 6.00 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 8.7.2.0 9.0.0.0 9.0.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0	0.9 0.341 0.833 0.833 0.830 0.830 0.670
					,						

TABLE 21, continued

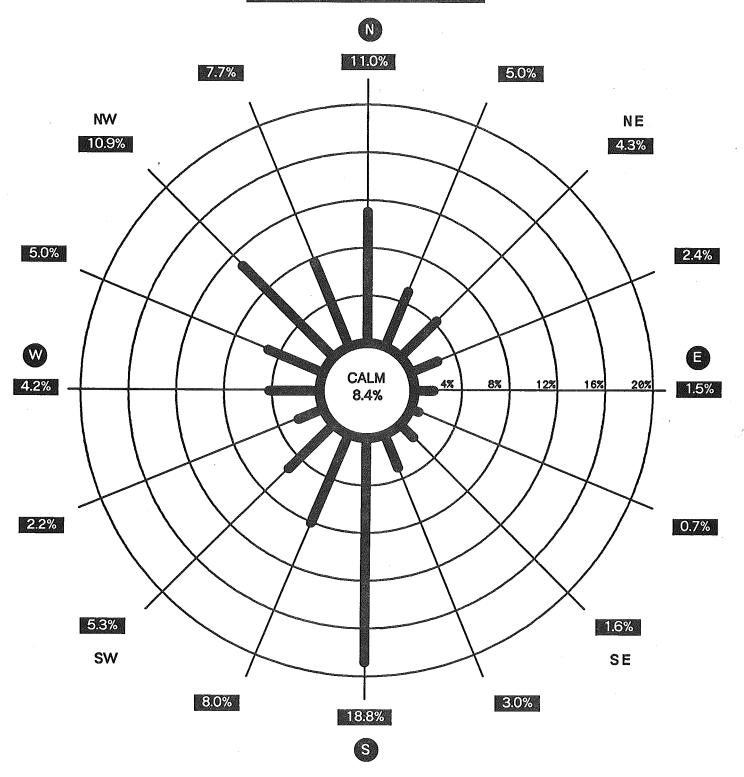
1982 TEN HIGHEST 1-HOUR AVERAGE DZONE DAYS WITH WIND DATA

UNITS : PARTS PER MILLION

TOWN NAME	SITE SAMPLE	ES 1	a	ო	4	رن ا	o	1	ω	o \	, O
MADISON METEOROLOGICAL SITE NEWARK	2 12 DA DIR (D VEL (M SPD (M	0,	8000	0.170 6/26/82 250 7.6	26	9 60	22.01	25. 25. 11.	٠٠. ع 2 دي . 8 .	, 1-4 177 20 80.	5.7 8 8.3 6.3
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	RATIC EY VEL (M SPO (M RATIC RATIC RATIC RATIC SPO (M RATIC SPO (M RATIC SPO (M	EG) 0.900 PH) 4.9 PH) 0.786 PH) 7.86 PH) 7.5 PH) 0.993 PH) 6.70	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.739 0.290 0.3.3 0.67 0.897 0.897	0.897 2.50 2.50 2.50 2.50 2.50 2.60 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.7	0.859 0.25.6 0.25.6 0.25.6 0.998 0.90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.968 0.950 0.950 0.978 0.978 0.978	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MIDDLETOWN METEOROLOGICAL SI1		0 0 0	4 > 00 UU · ·		.92 .15 .11 .11	.08 715 222 9.0	98.	96.	98	.84 /26 /25 7.7	£ 25. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	NATIC DIR (D SPD (M RATIO DIR (D SPD (M		0.90 0.90 0.12 0.23 0.23 0.23 0.77 0.77		0.968 250 6.864 7.5	0.954 210 5.5 6.3 190 4.6	0.865 3.2 3.2 5.0 190 5.0	0.992 0.892 0.836 0.220 0.7	0.924 0.920 0.935 7.77 5.55	0.739 0.00 0.167 2.10 5.0	0.220 0.320 0.200 0.200 0.700
METEOROLOGICAL SITE WORCESTER WORCESTER	RATI DIR VEL SPD RATI	0.895 6.90 7.33 0.945 0.95	. 993 6.70 8.49 1.54	. 949 780 9.80 140 140	.978 8.60 8.90 1.968	911 6.70 7.50 88.5 142		.920 8.5 8.6 136	948 949 950 950 950 950	8	က္က ထွား အတ္က ထွ
		E 7/16/82 G) 220 H) 7.6 H) 9.2 G) 280 G) 280 H) 0.3 H) 0.3		6/15/82 220 9.0 9.5 0.954 210 5.5 6.3	7/15/82 140 5.4 6.3 0.855 200 4.6 4.9	5/26/82 180 3.8 7.5 0.503 220 0.9 2.9 0.307	7/25/82 250 11.4 11.8 0.968 250 4.8 5.6		9/15/82 180 5.2 6.3 0.827 250 0.6 0.6	4/25/82 190 10.1 11.1 0.910 210 5.5 6.5	

1982 TEN HIGHEST 1-HOUR AVERAGE OZONE DAYS WITH WIND DATA

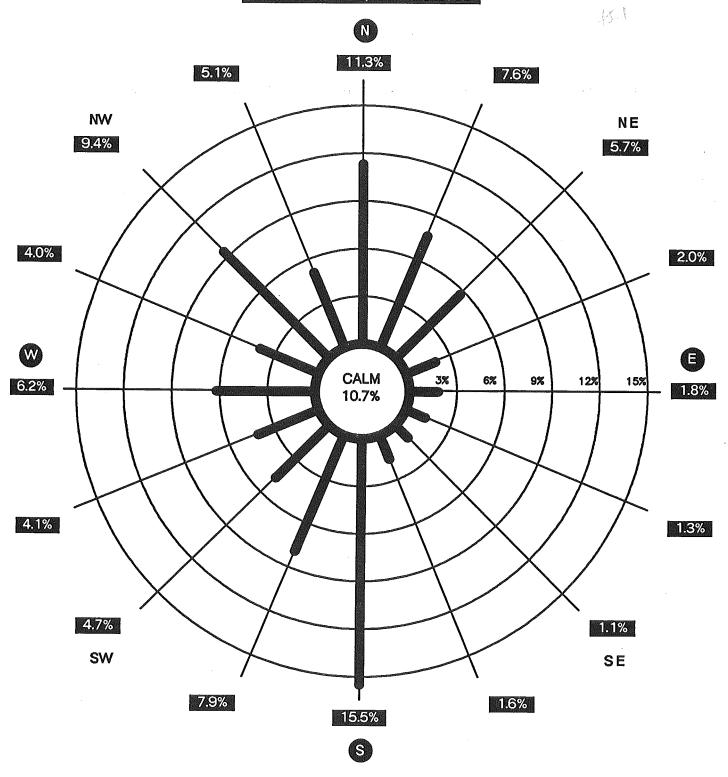
		1982 1	TEN HIGHES	T 1-HOUR	AVERAGE (OZONE DAY	DNIM HLIM	ND DATA		UNITS :	PARTS PER	MILLION
	TOWN NAME SIT	E SAMPLES		N ,	ო	4	ഗ	ω	. 7	ω	ത	01
	METEOROLOGICAL SITE BRIDGEPORT	DIR (DEG) VEL (MPH) SPD (MPH)	220 5.8 6.5	ო	$\circ \cdot \cdot$	± ω 4.	0	22 7.		~ 4 0	6.0	ტ ი. ი.
	METEOROLOGICAL SITE WORCESTER	RATIO DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.895 290 6.9 7.3	0.948 240 9.1 9.6 0.950	0.911 270 6.6 7.5	0.858 250 6.932	0.853 320 6.3 7.2 0.871	0.978 260 8.6 9.968	0.836 240 7.3 7.6 0.963	0.674 150 0.8 5.8	0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0 7.0 m n o . 8 n o 4 o 0
3 W Z	12 METEOROLOGICAL SITE NEWARK	13 187 DATE DIR (DEG) VEL (MPH) SPD (MPH)	0.190 7/17/82 200 8.6 9.8	\cdot · · · · · · · · · · · · · · · · · · ·	200	/ 0 α 4 · ·	\cdot \cdot \cdot \cdot	\wedge \mathbf{u} \mathbf{o} \mathbf{u} \mathbf{v} \cdot	34 NO · ·	្ទហេហ • •	w ~ o · ·	/ 00 to 00 · ·
	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE	RATIC DIR (DEG) VEL (MPH) SPD (MPH) RATIC DIR (DEG)	0 8 200 9 8 9 0 2 4 5 4 0	$\sigma u \cdot \cdot u \sigma$	700 07	$oc \cdot \cdot oc$	$mo \cdot \cdot o -$	0	0 - · · w w	900 • • 90	0 .859 2 2 5 5 6 2 5 6 5 6 5 5 6 6 5 5 6 6 6 5 5 6 6 6 6	$\mathbf{u} \sim \cdot \cdot \mathbf{u} \circ$
	BRIDGEPORT METEOROLOGICAL SITE WORCESTER	VEL (MPH) RATIO DIR (DEG) VEL (MPH) SPD (MPH)	0 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0	0 .09.0 .0940 .0920 .0220 .0220 .0320	5.8 6.8 290 6.9 7.3	0.920 0.920 8.50 0.98.6	0.89.0 2.89.0 2.90 5.3 6.8	0.993 0.993 270 6.7 6.7		0.978 260 260 8.9 8.9		0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
STAF	STAFFORD METEOROLOGICAL SITE NEWARK		0.196 7/17/82 200 8.6 9.8	>0 · · c	$004 \cdot \cdot c$	70004 · · · a	2 · · · · · · · · · · · · · · · · · · ·	> 44 (0 Q) · · · C	24 10 G · · R	0.139 7/5/82 200 9.1	$\mathfrak{g} \circ \mathfrak{g} \circ $	0 - 0 - v
	METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT	VEL (MPH) SPD (MPH) RATIO DIR (DEG) VEL (MPH)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.900 9.00 9.00 0.975 7.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 044080777 008040800 00804080	0 22 20 20 20 20 20 20 20 20 20 20 20 20
	METEOROLOGICAL SITE WORCESTER	RATIC DIR (DEG) VEL (MPH) SPD (MPH) RATIO	0.958 240 6.2 7.3 0.844	$44 \cdot \cdot 0$	$\alpha \cdot \cdot \alpha$	$\alpha \cdot \cdot \alpha$	$00 \cdot \cdot 4$	$\omega_4 \cdot \cdot \omega$	- 6 8	0.749 250 5.4 5.9 0.910	6 • • 6	თთ • • თ


TABLE 21, continued

0.160 6/15/82 220 9.0 9.0 9.55 0.954 0.967 190 190 190 0.911 5.0 6.6 6.6 6.8 UNITS : PARTS PER MILLION 0.175 9/15/82 180 180 180 6.3 0.827 0.827 0.130 0.130 0.674 0.674 0.674 0.674 0.674 0.1856/26/82 7,25/82 250 11.4 11.8 0.968 0.968 0.864 0.864 0.978 0.978 0.978 0.968 0.195 8/5/82 240 240 6.548 0.548 1.4 7.0 0.196 0.196 0.996 4.4 0.527 1982 TEN HIGHEST 1-HOUR AVERAGE DZONE DAYS WITH WIND DATA 0.213 7/18/82 240 10.6 0.992 0.836 0.836 0.920 0.920 0.920 0.920 0.9836 0.9836 0.9836 0.9836 0.9836 0.9836 0.9836 0.9836 0.9836 0.222 7/17/82 2000 8.0 9.8 0.876 8.3 0.964 0.968 0.968 0.958 0.958 0.958 0.228 260 10.4 11.6 0.250 250 250 6.0 6.0 6.2 0.959 6.2 0.949 7.6 8.2 0.230 7/19/82 250 9.1 10.1 0.900 6.2 0.786 7.4 7.5 0.993 0.993 0.843 0.233 7/16/82 7.200 0.822 2822 0.109 0.109 0.822 0.830 0.830 0.895 0.895 0.895 7 203
DATE
DATE
DATE
WEL (MPH)
SPD (MPH)
SPD (MPH)
SPD (MPH)
RATIC
DIR (DEG)
VEL (MPH)
SPD (MPH)
RATIC
VEL (MPH)
SPD (MPH)
SPD (MPH)
SPD (MPH)
RATIC
VEL (MPH)
RATIC SITE SAMPLES METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT TOWN NAME STRATFORD

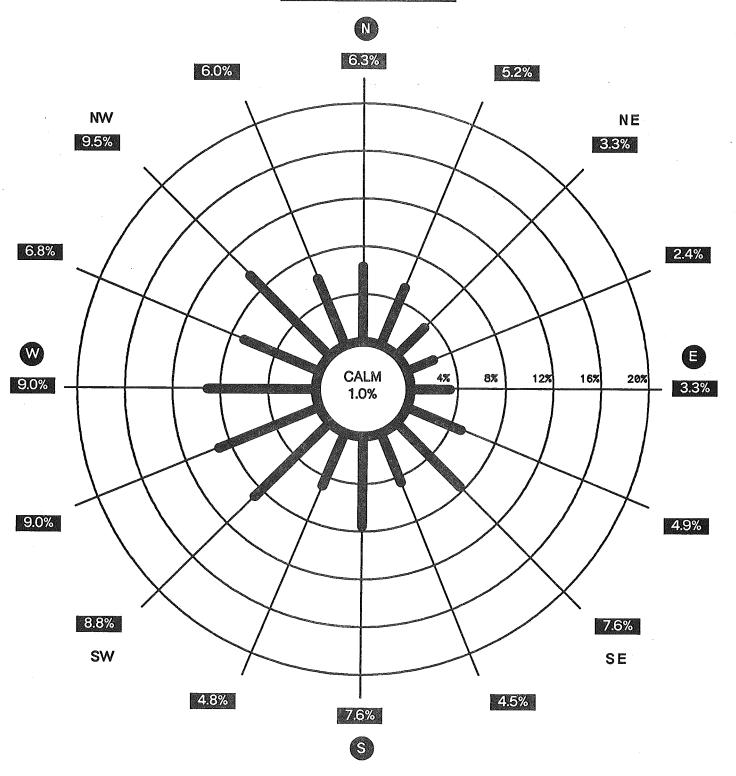
WIND ROSE FOR APRIL - SEPTEMBER 1981

BRADLEY INTERNATIONAL AIRPORT


WINDSOR LOCKS, CONNECTICUT

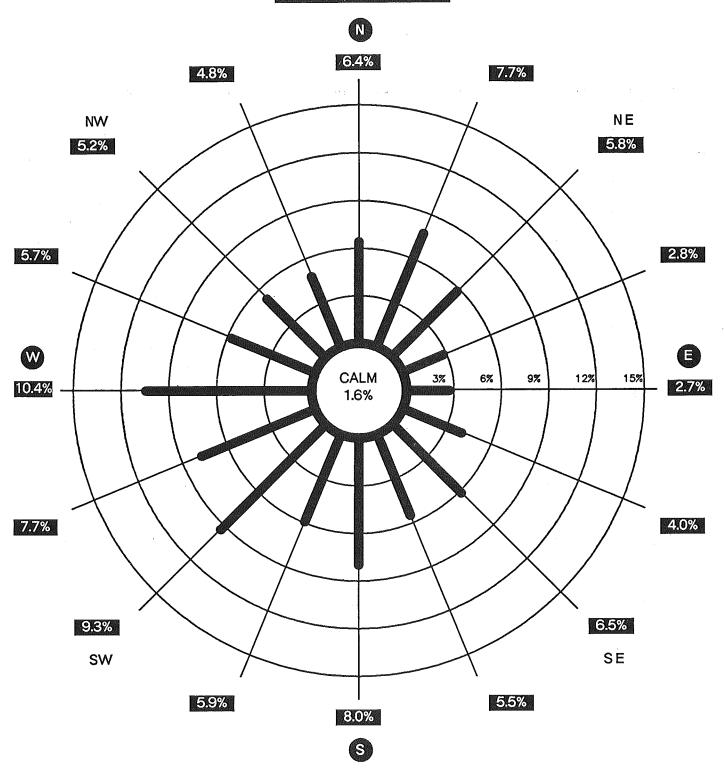
WIND ROSE FOR APRIL - SEPTEMBER 1982

BRADLEY INTERNATIONAL AIRPORT


WINDSOR LOCKS, CONNECTICUT

WIND ROSE FOR APRIL - SEPTEMBER 1981

NEWARK INTERNATIONAL AIRPORT


NEWARK, NEW JERSEY

WIND ROSE FOR APRIL - SEPTEMBER 1982

NEWARK INTERNATIONAL AIRPORT

NEWARK, NEW JERSEY

V. NITROGEN DIOXIDE

Conclusions

Nitrogen dioxide (NO₂) concentrations at all monitoring sites were well below the NAAQS for NO₂ in 1982. This was the first full year the DEP used continuous electronic analyzers to measure NO₂ levels. NO₂ trend analysis or comparisons will not be made until two full years of data are available.

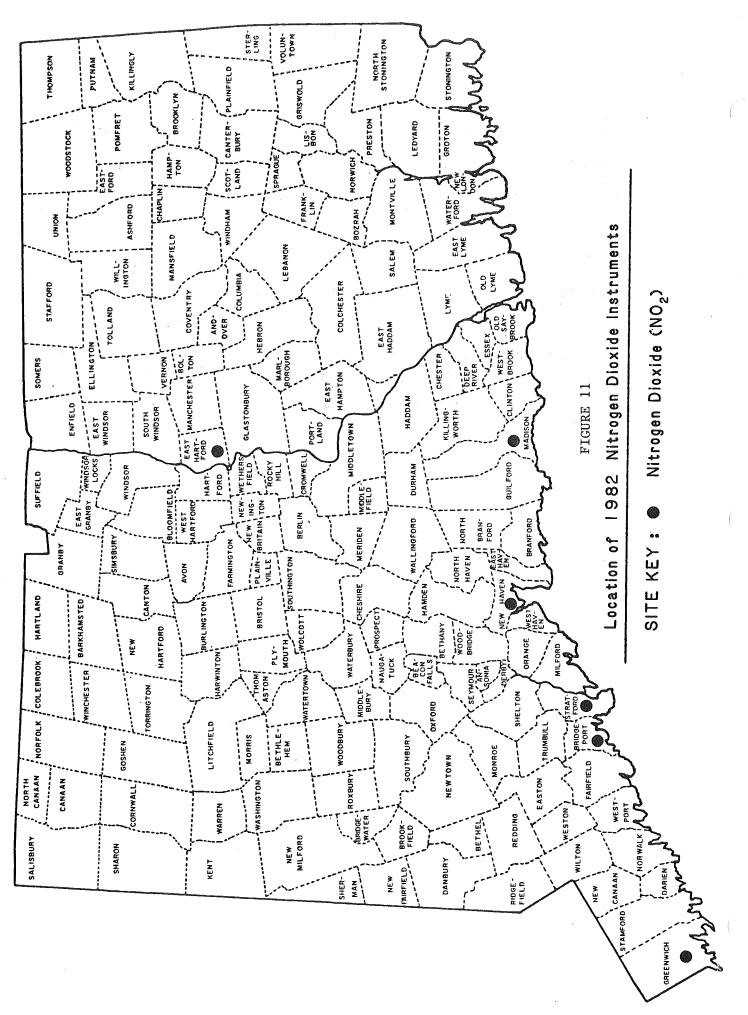
Sample Collection and Analysis

The DEP Air Monitoring Unit used continuous electronic analyzers employing the chemiluminescent reference method to continuously measure NO_2 levels.

Discussion of Data

Monitoring Network - There were six nitrogen dioxide monitoring sites in 1982 (see Figure 11). The sites were distributed in a network covering three urban areas and three background areas to obtain data alongside ozone measurements. The urban sites (Bridgeport 123, East Hartford 003 and New Haven 123) are permanent year-round sites, whereas the background sites (Greenwich 017, Madison 002 and Stratford 007) are operated only during the summertime "ozone season."

Precision and Accuracy - Twenty-eight precision checks were made on the NO₂ monitors in 1982, yielding 95% probability limits ranging from -12% to +10%. Accuracy is determined by introducing a known amount of NO₂ into each of the monitors. Three different concentration levels are tested on the monitors low, medium, and high. The 95% probability limits for the low level test ranged from -10% to +14%; those for the medium level ranged from -6% to +4%; and those for the high level test ranged from -4% to -1%.


Historical Data - The DEP's historical file of annual average nitrogen dioxide data from gas bubblers for 1973-1980 is available in the 1980 Air Quality Summary.

Annual Averages - The annual average NO₂ standard was not exceeded in 1982 at any site in Connecticut. In 1982 three sites had sufficient data to compute valid arithmetic means. Since data from 1981 is incomplete, no comparisons can be made.

Statistical Projections - The format of Table 22 is the same as that used to present the TSP and sulfur dioxide data. However, Table 22 gives the annual arithmetic mean of the valid 24-hour NO2 averages to allow direct comparison to the annual NO2 standard. The 95% limits and standard deviations were used to predict the number of days the levels of 100 ug/m 3 and 282 ug/m 3 would be exceeded at each site if sampling had been conducted every day. (See the TSP section of this Air Quality Summary for further information on this type of analysis.)

Although there is no 24-hour NAAQS for NO2, the 282 ug/m³ level was selected for this presentation because at this level a 1st stage air pollution alert is to be declared according to the State of Connecticut's Administrative Regulations for Abatement of Air Pollution.

 $10-{\rm High}$ Days with Wind Data - Table 23 contains the ten highest daily NO₂ readings for each site in 1982 along with the associated wind conditions. (See the discussion of Table 11 in the TSP section for a description of the origin and use of the wind data.)

		cted Over 9/m3			and the second section	Anna C	de production	S. C. Browd Larkell		
)	Se S	Predicted Days Over 282 ug/m3	Verseeli						upper/philips	ž Co
	The state of the s	Predicted Days Over 100 ug/m3	er f						S Children Barbard S	The hand the form of the form
	TABLE 22 NO2 Annual Averages and Statistical Projections	Standard Deviation	25.594	17.954	18.145	7.640	45.267	14.898	statistics	
	the party of the same of the s	95-PCT-Limits Lower Upper	55	40	40	20	59	30	ative annu	
	TABLE 22	95-PCT	54	40	34	17	89/	27	epresent.	of this
	NO2 Annual Avera	Arithmetic Mean	54.8	40.3	37.2	18:1	68.2	28.5	cient size for representative annual	all hod 275% of total grand, houng, nearly for the grand, nearly
Grand Control	Town Town Town Town Town Town Town Town	Samples	353	363	100*	73*	360	166*	insuffi	re g
	The state of the s	Year	1982	1982	1982	1982	1982	1982	Sampling not random or of	
		Site	123	003	017	002	123	200	not ran	
		Town Name	Bridgeport	East Hartford	Greenwich	Madison	New Haven	Stratford	* Sampling	
j										

N.B. See Table 22 in the 1983 Air quality Summary.

1982 TEN HIGHEST 24-HOUR AVERAGE NO2 DAYS WITH WIND DAIA

			V-drag consensuation	1					: STIND	PARTS PER	MILLION
TOWN NAME SI	ITE SAMPLES	-	-	ო	4	ம	ဖ	7	ω	on .	10
BRIDGEPORT 1	23 270	0.080 o	0.07	0.6	G G	9	•	c	ú	C	
	` (11/1		າ ເກົ	0) r	າທ	າທ	10/ 6/82	ת ה	11/2/82
NEWARK	7 N N N N	7 6	220 5.3	200	0 0 0 0	220 3.0	210	100	240 3	200 7	
	SPD (MPH)	c	. o	7.	o 0	41	ဖ		Ó	ထ	တ်
METEDROLOGICAL SITE	DIR (DEG)) -	\circ	ΩΓ	വര	40	တျင	~ •	സ	ທເ	0
	VEL (MP		•		n •	ກ •	. ת	~ ·	` '	Ω	ຫ
	SPD (MPH)	N	٠			•				٠.	
7.7	RATIC ATT	0	9	9	G (0	4	4	0	S	4
mercondender 311E BRIDGEPORT	(Ed 2) TAV	νœ	ריי	~	m	C)	ო	on i	a	0	C/I
) 	SPD (MPH)	ο ω								•	
	RATIO	6.0	·œ	4	٠.	• 6	. ~	• LC		· 0	. 0
311E	DIR	280	Ŋ	9	25	26	25	25	2	າ ຫ •	, 0
LSI		٠	٠	•		•				٠	
	SPU (MPH)	0.799	٠ س	• 0	• (C	· α	• 0	. 0	٠. (7.8	٠, ۲
			1))	•	•		D		ņ
EAS! HAR! FURD	3 273	0.053	47	46	9	4	0.041	.03	0.038	٥.	٠.
METEOROLOGICAL SITE		10/31/82	10/30/82	12/15/82	`	8/27/82	12/14/82	9/10/82	`	10/19/82	10/28/82
NEWARK	VEL					٠.	4 '	γ.	r	_	٥
	SPD (MPH)			•		•				• •	•
	RATIC	0.883	S	9	CA	98	ത	വ	സ	· (*)	• Ø
MEIEUKULUGICAL SITE	S I S		O	6	in	-	ത	$^{\circ}$	27	20	1.00
מאטרבי				٠		٠.	•	•		•	٠
		<	• 6	• 5	N (α d	7	4.0	m	ທີ	ç
METEOROLOGICAL SITE	DIR (DEG)	۰	ი ი ი ი	2 C 4 C	ກຕ	- (ως Σ	ຫ ເ	\circ	ശ	CI (
BRIDGEPORT	d E) .) .	γ.	٧.	r ·	v	N .	ກ	າ
	Ξ.		6	ري			Ġ				
۲	n (986. 0	C- 1	C- 1	ത	α	ın	ഗ	-	C)	$^{\circ}$
THE TRUCK OF THE BUILDING THE B	2 2	0 0 0 0	n	Ω	ന	4	LO.	28	2	4	O
	70	7.0			7.0			•		•	
	RATIC	0.962	(Q)	ω	ത	- ω	ന	90	0.929	• დე	996.0
GREENWICH	17 100	0.0	.04	.04	.04	Ò	٥.	0.3	0	0	C
,	DATE	2/	S	0	ß	7	~		9	5/17/82	ا (
METECROLOGICAL SITE	DIR (DEG)	3 17	S	ഗ	S	0	22	ω	∞	~	9
NESPEN		~ 0				•		•	٠	•	7
		0	• (0 0	n (ά.	9.	٠.	7.		0
METEOROLOGICAL SITE	DIR (340	220	4.60	0.859 150	0.687	340	500°0	960	0.685 000
BRADLEY	VEL (M	2.3	•	•	•	• (٠.	,	•
	SPD (MPH)	4	•	٠	•	•					
	RATIO	0.544	S	O	ပ	S	-	7	0	_	00
											,

TABLE 23, continued

	6	982 TEN HIG	GHEST 24-HOU	OUR AVERAGE	E NO2 DAY	S WITH WI	ND DATA		. STIND	PARTS PER	MILLION
TOWN NAME	SITE SAMPL	LES 1	N	ო	4	ഗ	φ	7	æ	ത	0
METEOROLOGICAL S BRIDGE	SITE DIR (DEG) EPORT VEL (MPH) SPD (MPH)		4	$\alpha \cdot \cdot$	σ · ·		$\alpha \cdot \cdot$	ω· •	$\circ \cdot \cdot$		ო
METEOROLOGICAL SITE WORCESTER	RATI DIR VEL SPD RATI	0.683 EG) 220 PH) 2.0 PH) 6.9	0.957 300 7.3 7.6	0.997 280 10.5 0.963	0.911 270 6.6 7.5	0.798 90 0.7 7.8	0.985 240 9.77 9.90 1.00	0.50 3.30 5.08 0.74	0.853	0.301 350 8.1 8.6	0,862 260 10.12 10.12
MADISON METEOROLOGICAL S	SITE DIR (DEG) NEWARK VEL (MPH) SPD (MPH)	9.5	8/20 8/20 26 11.	.01 /23 28 5.	.01 25 9.	.01 25 11.	.01 29 29 7.		.01 7.7 10.0	26.726	2.00
METEOROLOGICAL SITE BRADLEY	RATIC DIR (D VEL (M SPD (M	·	.92 23.	ຜູດ 74	g. 4. 4. 0.	0.00 0.00 0.00 0.00	9.5		95.59	999	9.2.60
METEOROLOGICAL SITE BRIDGEPORT METEOROLOGICAL SITE WORCESTER	RATIO DIR (D SPD (M RATIC DIR (D SPD (M	္ ္ ଊ୕୶ୄଊଊଊୠ୶ଢ଼ଢ଼	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2240 0 0 0 0 0 0 0 0 0 0 0 0 0	0 22 20 20 4 3 3 4 5 7 6 7 7	0.054 7.55 0.07.5 0.078 0.078	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	8044990077	0 26 26 26 26 26 26 26 26 26 26 26 26 26		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NEW HAVEN METEOROLOGICAL S	2005	0.97	0.97 0.06 5/27 20	. 0 0 0 •	.4 00-	• œ − œ •	· com ·	· 12 - 12 · 12 ·	- 1004 ·	0 004	் ம் ம் ம்
METEOROLOGICAL S BRA	SPC RATI DIR VEL SPD	0.92.	0.859 150 0.7	7.5 0.952 170 2.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.0 340 1.3	8.5 220 3.1 4.5	0 88 0 0 0 0 0 0 0 4	0.869 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0.85.2 270 3.6 9.6	0.827 2827 0.6 0.6
METEOROLOGICAL SITE BRIDGEPORT		0 0	$\mathbf{n} \circ \cdot \cdot \circ$	$50 \cdot \cdot 4$	n m · · ~	0 • • 5	$\sigma \alpha \cdot \cdot \sigma$	დი • ∙ თ	4 (0 · • (0)	-· · v c	7 · · @ m
METEOROLOGICAL SITE Worcester	VEL SPD RATI	0	6.0.	. 80 . 80	96.		32.00 0.00 0.00	9.79	24469	92.	

TABLE 23, continued

0.028 260/82 1260/82 11.77 11.77 10.88 UNITS : PARTS PER MILLION 5/27/82 2000 7.5 7.5 0.859 0.7 0.7 0.7 0.255 0.255 0.255 0.255 0.798 0.031 180 180 180 180 0.827 0.66 0.130 0.130 0.674 0.674 0.032 9/10/82 250/82 0.857 1.33 0.857 0.697 0.997 0.997 0.963 1982 TEN HIGHEST 24-HOUR AVERAGE NO2 DAYS WITH WIND DATA ဖ 0.032 280.0 280.1 280.1 3.30 0.837 0.837 0.837 0.250 0.550 0.501 0 ம 0.037 260 260 250 0.387 0.387 0.387 0.896 0.896 0.946 0.946 0.946 0.946 0.039 7/19/82 250 9.1 10.1 0.900 4.9 4.9 6.2 0.786 230 7.4 7.5 270 6.7 7.9 0.843 0.040 5/6/82 240 7.9 9.1 SPD (MPH)
RATIC
DIR (DEG)
VEL (MPH)
SPD (MPH)
RATIC
DIR (DEG)
VEL (MPH)
RATIC
DIR (DEG)
VEL (MPH)
RATIC
RATIC
RATIC
RATIC
RATIC
RATIC 7 166 DATE DIR (DEG) VEL (MPH) SITE SAMPLES METEOROLOGICAL SITE NEWARK METEOROLOGICAL SITE WORCESTER METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE BRIDGEPORT TOWN NAME STRATFORD

VI. CARBON MONOXIDE

Health Effects

Carbon monoxide (CO) is a colorless, odorless, poison gas formed when carbon-containing fuel is not burned completely. It is by far the most plentiful air pollutant. EPA estimates that more than 102 million metric tons of CO are spewed into the air each year in the United States. (A metric ton is 1,000 kilograms, or about 2,200 pounds.)

Fortunately, this deadly gas does not persist in the atmosphere. It is apparently converted by natural processes to harmless carbon dioxide, in ways not yet understood, fast enough to prevent any general buildup. But it can reach dangerous levels in local areas, as in city-street canyons with heavy auto traffic and little wind.

Clinical experience with accidental CO poisoning has shown clearly how it affects the body. When the gas is breathed, CO replaces oxygen in the red blood cells, reducing the amount of oxygen that can reach the body cells and maintain life. Lack of oxygen affects the brain, and the first symptoms are impaired perception and thinking. Reflexes are slowed, judgement weakened, and a person becomes drowsy. An auto driver breathing high levels of CO is more likely to have an accident; an athlete's performance and skill drop suddenly. Lack of oxygen then affects the heart. Death can come from heart failure or general asphyxiation, if a person is exposed to very high levels of CO.

Conclusions

The eight-hour National Ambient Air Quality Standard of 9 parts per million (ppm) was exceeded at three of the five carbon monoxide monitoring sites in Connecticut during 1982. These sites were: Hartford 012, New Britain 002, and Stamford 020. The 8-hour standard was exceeded twice at Hartford 012, and Stamford 020, and three times at New Britain 002. No site exceeded the one-hour standard of 35 ppm.

A definite decrease in carbon monoxide levels took place between 1981 and 1982.

In order to put the monitoring data into proper perspective, it must be realized that carbon monoxide concentrations vary greatly from place-to-place. More than 95% of the CO emissions in Connecticut come from motor vehicles; so concentrations are greatest in areas of traffic congestion. The magnitude and frequency of high concentrations observed at any monitoring site

are not necessarily indicative of widespread CO levels. Thus, most locations in New Britain and Stamford are probably not experiencing CO levels as high as those observed at the monitoring sites in those towns. On the other hand, there are probably locations in Bridgeport, Hartford, and New Haven where CO levels are higher than those observed in the monitoring sites in those towns.

The CO standards are likely to be exceeded in any city in the state where there are areas of traffic congestion. However, as federally-mandated controls reduce emissions from new motor vehicles, and as Connecticut's SIP control strategies are implemented, there should continue to be a decrease in the number of such areas; the remaining areas should shrink in size and have CO levels which are nearer the standards.

Unlike SO₂, TSP and O₃, elevated CO levels are often associated with non-southwesterly winds, indicating that this pollutant is more of a local-scale (not regional-scale) problem.

Method of Measurement

The DEP Air Monitoring Unit uses instruments employing a non-dispersive infrared technique to continuously measure carbon monoxide levels. The instantaneous concentrations are recorded on strip charts from which hourly averages are extracted. The instruments are fairly insensitive to sampling line length, but concentrations vary dramatically with inlet exposure and proximity to traffic lanes.

Discussion of Data

Monitoring Network - The network in 1982 consisted of five carbon monoxide monitors: Bridgeport 004, Hartford 012, New Britain 002, New Haven 007, and Stamford 020. They are all located in urban areas. All sites are located west of the Connecticut River, with three of them in coastal towns (see Figure 12).

Precision and Accuracy - The carbon monoxide monitors had a total of 142 precision checks during 1982. The resulting 95% probability limits were -5% to 12%. There was no accuracy data available for CO in 1982.

8-Hour and 1-Hour Averages - Carbon monoxide levels recorded during 1982 were lower than during 1981. However, Hartford 012, New Britain 002, and Stamford 020 and had second highs exceeding the 8-hour standard of 9 ppm which means that the standard was violated at these sites. Only Stamford 020 violated the 8-hour standard in 1981. But the standard was exceeded 113 times in 1981

at Stamford, compared to only 2 exceedances in 1982. This dramatic decrease can be attributed to a change in the traffic flow near the Stamford site. The road next to the monitor was made a one-way street at the end of 1981.

As for 1-hour averages, no site in the state recorded a value exceeding the primary 1-hour standard of 35 ppm. Both New Britain 002 and New Haven 007 recorded a highest 1-hour value greater than the year before. Second high 1-hour values were higher in 1982 at three sites, and lower at the other two, when compared to 1981.

The maximum and second high CO concentrations at each site are presented in Table 24. Table 25 presents monthly first highs and a tally of the number of times the standards were exceeded at each site. Seasonal variations in CO levels can be observed using this table.

10-High Days with Wind Data - Table 26 lists the maximum l-hour CO averages with dates of occurrence for the 10-highest days at each CO site in Connecticut for 1982. The wind data associated with these high readings are also presented. (See the discussion of Table 11 in the TSP section for a description of the origin and use of these wind data.)

At all five CO sites the high CO levels tended to occur during the colder months when the region was under the influence of high pressure with southwesterly winds. Low atmospheric mixing heights and other meteorological conditions are part of the reason CO levels are high on southwest wind days, but in this case another explanation also appears credible. A noteworthy feature of the high CO days is that the winds tend to be more persistent from all directions than on the high days for the other pollutants. Since 95% of the CO emissions in Connecticut come from motor vehicles, it is likely that the high CO levels are caused when persistent winds are blowing CO emissions from the direction of nearby roads toward the monitors. This appears to be the case especially with the Stamford 020 site, where the most heavily traveled roads are to the southwest of the monitors.

Another feature of the high CO days is that rarely does more than one site record a high level on the same day. There was only one day in 1982 on which more than one site recorded one of its two highest values. (On 2/3/82 Bridgeport 004 recorded its second highest value, while on that day New Haven 007 recorded its high for the year.) This is opposite of the behavior exhibited by all the other pollutants and it demonstrates that high levels of CO are much more dependent on local effects than are the other pollutants.

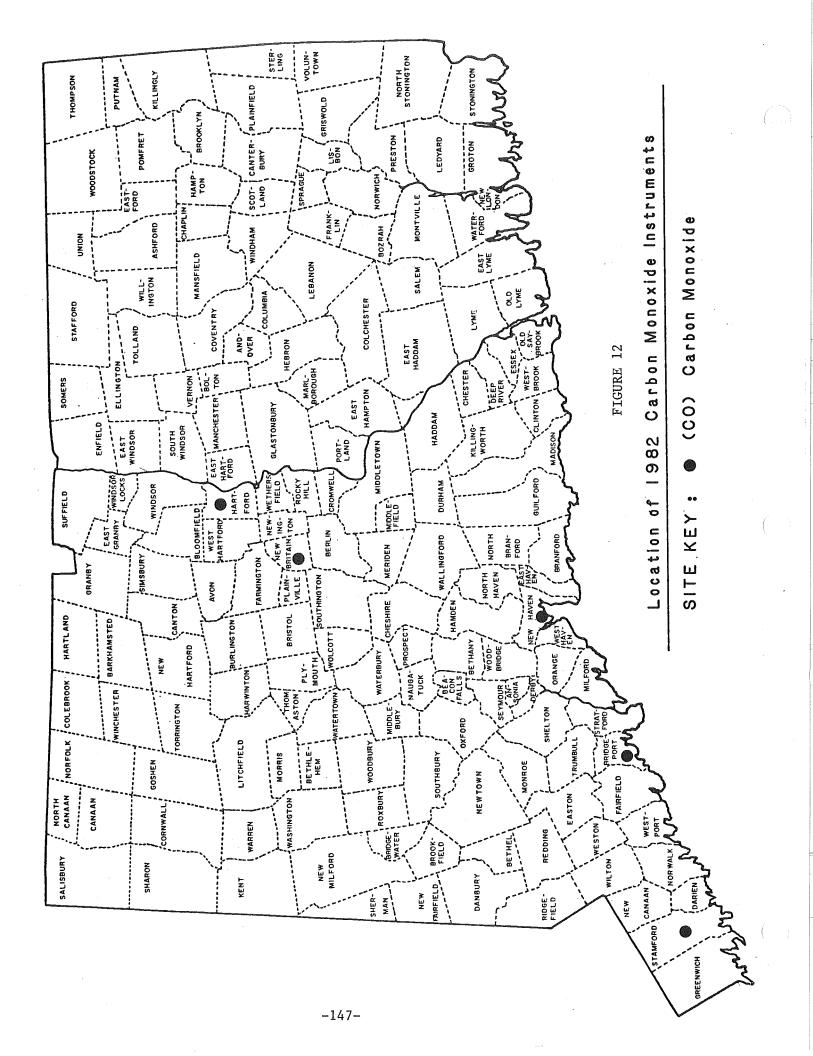


TABLE 24

1982 CARBON MONOXIDE STANDARDS ASSESSMENT SUMMARY (UNITS = PPM)

TIME OF 2ND HIGH 1-HOUR AVERAGE ²	2/3/16	12/14/16	10/28/08	3/12/24	11/17/19
2ND HIGH 1-HOUR AVERAGE	11.2	14.7	19.9	13.9	\$ 17 \$ 8.
TIME OF MAXIMUM 1-HOUR AVERAGE ²	1/6/09	11/30/23	2/16/08	2/3/17	12/15/22
MAXIMUM 1-HOUR AVERAGE	11.5	15.0	20.0	14.5	16.3
TIME OF ZND HIGH 8-HOUR RUNNING	12/01/01	10/28/24	2/16/14	11/17/24	12/15/24
2ND HIGH 8-HOUR RUNNING AVERAGE	7.4	9.1	9.3 /	8.0	o.
TIME OF MAXIMUM 8-HOUR RUNNING	2/03/17	12/02/24	10/28/13	3/13/04	12/15/24
MAXIMUM 8-HOUR RUNNING AVERAGE	7.7	4.	6.6	8.1	100
TOWN-SITE	Bridgeport-004	Hartford-012	New Britain-002	New Haven-007	Stamford-020

1 Time of 8-hour averages is reported as follows: month/day/hour (EST), specifying the end of the 8-hour average period
2 Time of 1-hour averages is reported as follows: month/day/hour (EST), specifying the end of the 1-hour average period

TABLE 25

1982 CARBON MONOXIDE SEASONAL FEATURES, UNITS = PPM

														NUMBER	NUMBER
TOWN-SITE		JANA	FEB.	MARCH	APRIL	MAY	JUNE	MILE	AUG.	SEPT	OCT	NOV	DEC	OF TIMES STANDARD EXCEEDED	OF DAYS STANDARD EXCEEDED
Bridgeport-004	Max-1 Hr.	11.5	11.2	8.6	6.5	7.1	8.9	5.9	9-1	ħ.∂	10.9	9.5	₩.6	0	•
	Max-Running 8-Hr.	5.2	7.7	5.2	0-4	1 -1	5.8	2.4	3.2	4.2	9.9	7.2	7.4	0	0
	# Days 8-Hr Exceeded	0	0	0	0	0	0	0	0	0	o -	0	0		
Hartford-012	Max-1 Hr.	13.1	10.5	11.2	10.9	7.8	# · 8	7.	9.5	8.5	14.0	15.0	14.7	0	
	Max-Running 8-Hr.	8.0	9.9	7.9	ري ق	5.2	5.1	5.3	5.1	5.5	9.1	7.6	م د	N	N
	# Days 8-Hr Exceeded	0	0	0	0	0	0	0	0	0	/	0	2		
New Britain-002	Max-1 Hr.	14.3	20.0	11.4	11.4	8.2	8.7	10.0	8.9	11.9	19.9	12.8	13.1	0	0
	Max-Running 8-Hr.	7.5	9.8	8.	5.0	5.3	4.6	7.2	5.1	6.9	و. و.	9-3	# . 8	m	m
	# Days 8-Hr Exceeded	•	- -	0	0	0	0	0	0	0	•	2	Ο.		
New Haven-007	Max-1 Hr.	8.5	14.5	13.9	6.3	5.5	8.9	က်	7.4	4.7	13.6	13.0	ۍ 8	•	0
	Max-Running 8-Hr.	5.6	6.1	8.1	±.1	\$ \$	3.3	3.3	3.3	6.4	6.3	80.0	6.9	0	0
	# Days 8-Hr Exceeded	0	0	0	0	0	0	0	0	0	0	0	0		
Stamford-020	Max-1 Hr.	13.5	14.5	9.5	6.5	¥0*9	5.6	٠ ټېر	7.7	~ o./	\$ 8.7 10.7	15.8	16.35	٥	0
	Max-Running 8-Hr.	7.9	8.1	ħ. 9	4°-6	4.8	4.2	5.3	4.1	ان 1.	7.7	1.6	200 3	N	N
	# Days 8-Hr Exceeded	0	0	0	0	0	0	0	0	0	0	. •-	-		

* <75% of data available

1982 IEN HIGHEST 1-HOUR AVERAGE CO DAYS WITH WIND DATA

											: SLIND	PARTS PER	MILLION
TOWN NAME	E SIT	TE SAMPLES	LES	-	7	ო	4	ß	ω	7	σ	თ	10
BRIDGEPORT		4 35		5.5	11.2	•		9.5	9.4	•	8.	9.6	
METEOROLOGICAL	OGICAL SITE	DIR	DATE 1, (DEG)	/ 6/8 2 220	2/ 3/82 40	10/29/82 200	10/20/82	11/30/82	12/ 1/82	1/22/82	(N) (3/ 9/82	11/17/82
	NEWARK	VEL	(MPH)	5.7	•	•		٠ ر	η.	٧.	8 6	. 2	ν.
		0 T T A C	(H.E.)	8.8	ω υ σ. υ	7.	œ ζ	ω 6	4,	12.	ω	œ	4
METEOROLOGICAL	OGICAL SITE	DIR	EG)	210		0 5	ОС	ηι	∞ c	<u>~</u> c	တျေ	40	4 (
	BRADLEY	VEL		5.0	١.			٠ لا	٠ د	v	n .	ο.	ָר כֿ
-		SPD (M	PH.	9.0	4	4.	ហ	υ.	8	•			• -
METEOROLOGICAL	SIT	DIR (D		. 898 210	တျဖ	တင	r 0	ന	40	φι	4 (φ,	0
	3EPO	RT VEL (MPH)	PH)	8.	•	٠ ١		. u	2 20	ກ ຜ ດີ.	N .		250
		SPD (M	PH)	ლ. დ. მ	8	س	œ.	4.				•	
METEOROLOGICAL	SIT	DIB (ب ص	010	2	40	നം	- (3	m	C	_	ด
	CEST	VEL (M	MPH)	6.0	ρ.	ο .		ກ	N .	m	0	თ	ΘÌ
				6.5	7.							ი თ ა სი	•
		RATIC	o.	921	N	ത	\sim	LO.	57	97	N	7	œ
HARTFORD		12 36	•	5.0	•		13.7	4.		ç			,
			=	30/82	· 4	10/27/82	. 4	1/19/82	۰œ	12/ 1/82	10/13/82	3/10/80	7/05/80
METEOROLOGICAL	OGICAL SITE	DIR	(DEG)	250	N	4	ത	9	26	80,	180	330	250
	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y) () (0.0	٠	•	•	•		•	•	•	
) L F & C	•	m (o (7	ທີ່	ω.	4.	•	•	•	
METEOROLOGICAL	OGICAL SITE	DIR	;	320	ന ത	0.445 360	തര	φι	თი	∞	~ 1	4	ധ
	BRADLEY	VEL	(MPH)	5.1		ς.	י מ	•	Ω	Э.	_	-	ശ
		SPD		5.2						•	•	•	•
- C C C U + U S S		RATIO	ö	995	ഗ	-	-	· 0	· OI	• 4	• თ	. 0	۰ω
MEIEUKULUGICAL BDIO	DGICAL SITE	מ) אוח	(DEG)	290	◂	œ	S	ത	ന	$^{\circ}$	6	36	22
	פאדמפרוסאי	SPD (M		5. 4. 0. c.	 	- 4	4 n	0.0	4 4 4 1	. N	0.1	ω : Φ :	7.5
		RATI	Ö	710	10	٠.	٠ σ	. 1	• a	, ç	4 .	υ.	7.
METEOROLOGICAL	DGICAL SITE	DIR (D	EG)	290	25	. –	99	9.0	, c	らく	~ m	⊃ ←	~ IC
	WORCESTER	VEL (M	H.	ص ص			•	•				•	١.
) 	Ë,	. C	œ ;	ω ί	ເດ	7	ά	4		5.5	
		⋖	·	7.06	m	თ	ത്	0	(0	4	m	-	(0
NEW BRITAIN		2 36		0.0	•	•	•			12.7			
METEODOLOGICA	1 F F O F O F O F O F O F O F O F O F O			16/82 1	ω,	1/19/82	g	S		2/19/82	• თ	•	
	NEWARK	V 1.2	(E E E E	ე თ ი	260 1.6	10 7	200	290	7 7 7 7	ဝဗ ဗ	010	190	240
		SPD		0.5			• •	•	•	٠	•	•	•
		RATIC		565	ത	9	വ	• 0	• 4	754	• (*	- o	. (
METEOROLOGICAL	DGICAL SITE	DIR (D	(DEG)	340	œ	100	17	9	2		8	· -	4 00
	BRADLEY	VEL (M		ლ ი ი	•	•		•	•	•		•	
		SPD (M)		7.6	- 6	- 0	4 (m	4	ო	'n	6.	6
		1 - 5	;	2	0.221	0.083	Ω.	-	0	-	ယ္	ď	0

.∢	
DATA	֡
۵	
Z	
3	
MITH WI	
ΥS	
δ	
8	
1982 TEN HIGHEST 1-HOUR AVERAGE CO DAYS	
S.	
AVERAGE	
3	
HOUT	
1	
<u></u>	
¥	
ច	
I	
TEN	
_	
1982	
2,	

	700	ביו שום	חבי וייים	ארבאם	E CU DAYS	ZIA I	DAIA		: STIND	PARTS PER	MILLION
TOWN NAME SI	SITE SAMPLES	-	a	m	4		ဖ	7	80	თ	0
METEOROLOGICAL SITE BRIDGEPORT		_	ო .	ი · ·	α .	и·•	ro ·	υ··	ო	5.00 80	- α
METEOROLOGICAL SITE WORCESTER	RATI DIR VEL SPD RATI	0.602 310 8.10 9.9	0.989 290 8.3 0.968	0.478 300 6.5 7.2 0.903	0.748 260 5.5 6.2 0.891	0.792 300 2.8 5.6 6.494	0.996 260 7.8 7.9 0.984	0.794 120 1.8 3.6 0.505	0.832 9.0 9.0 9.2	6.9 6.9 6.9 6.9	0.606 2.40 6.39 6.39
NEW HAVEN METEOROLOGICAL SITE NEWARK		7		$\cdot \omega \omega \cdot \cdot$			• დო • •	· • 0 to • •	.00	8 4	. 6 6
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE REIOROLOGICAL SITE	RATIC DIR (DEG) YEL (MPH) SPD (MPH) RATIC DIR (DEG)	0 0 0 0 0 0 0 0 0 0 0 0	400		$40 \cdot \cdot 00$	Na oa	040 ~	$\omega \omega \cdot \cdot \omega \omega$	100.00	800 44	20 40
METEOROLOGICAL SITE WORCESTER	SPD RATI DIR VEL SPD RATI				0.996 2.60 2.60 7.8 9.7 9.84	0 0.60.0 2.40 0.60.9 66.3	0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0	0.4.2 2.90 8.8 9.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 10 4 0 4 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STAMFORD METEOROLOGICAL SITE NEWARK		. 76	15. 715 21 4.	74. 722 33.	4 4 8 	13. 26. 4.	13. 12. 12.	2. B 2. 4	22 7.2 7.2 8.	12. 25. 9.	11. 133 33 10.
METEOROLOGICAL SITE BRADLEY METEOROLOGICAL SITE	RATI DIR VEL SPD RATI		$90 \cdot .46$	40 · · OR	40	96 96	3 to	00 · · 40	$\alpha \mathbf{n} \cdot \cdot \mathbf{n} c$	30 · · · · · · · · · · · · · · · · · · ·	$\omega \omega \cdot \cdot \omega \sim$
METEOROLOGICAL SITE WORCESTER	VEL (MPH) RATIC DIR (DEG) VEL (MPH) RATIC MRH) RATIC RATIC	0.7.6 10.8 10.705 290 8.3 10.5 787.0	0.83.0 0.87.0 0.87.0 8.25.0 0.984.3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	6.4 8.8 8.8 0.727 0.9 0.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70 4.6 10.8 0.426 50 50 6.3 6.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.994 6.3 6.3 6.3 7.7 7.2 7.2 7.2 9.9	0.00 0.00 0.00 0.966 0.966 0.966 0.964	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

VII. LEAD

Conclusions

The Connecticut primary and secondary ambient air quality standard for lead and its compounds, measured as elemental lead, is: 1.5 ug/m³, maximum arithmetic mean averaged over three consecutive calendar months. As in 1981, the lead standard was not exceeded at any site in Connecticut during 1982.

A downward trend in measured concentrations of lead has been observed since 1978.

The monitoring sites where the lead levels were greatest were generally in urban locations with moderate to heavy traffic. In Connecticut, the primary source of lead concentrations in the atmosphere is from the combustion of leaded gasoline in motor vehicles. Atmospheric concentrations of lead are continuing to decline as use of unleaded gasoline continues.

Sample Collection and Analysis

The Air Monitoring Unit uses hi-vol and lo-vol samplers to obtain ambient concentrations of lead. These samplers are used to collect particulate matter onto fiberglass filters. The particulate matter collected on the filters is subsequently analyzed for its chemical composition. Wet chemistry techniques are used to separate the particulate matter into various components. The lead content of the TSP is determined using an atomic absorption spectrophotometer. (The use of these sampling devices and the chemical analysis techniques were fully described in the TSP section.)

Discussion of Data

Monitoring Network - In 1982, both hi-vol and lo-vol samplers were operated in Connecticut to monitor lead levels (see Figure A). There were 16 hi-vol sites operated throughout the State (see Table 32) as part of the State and Local Air Monitoring Stations (SLAMS) network. The DEP also set up five new lo-vol monitors in 1982 in cities with populations greater than 200,000. They are Hartford 015 and 016, New London 003, Stamford 022, and Bridgeport 010. These "micro-scale lead sites" are situated near some of the busiest city streets in order to monitor "worst-case" lead concentrations. EPA approval for these lo-vol sites is being sought by the Department.

Precision and Accuracy - There were no precision data available for lead in 1982. Accuracy is determined by putting a known air flow through the monitor. There were 148 audits done in 1982, resulting in 95% probability limits ranging from -8% to +3%.

NAAQS - Connecticut's ambient air quality standard for lead and its compounds, measured as elemental lead, is: 1.5 micrograms per cubic meter (ug/m³), maximum arithmetic mean averaged over three consecutive calendar months. This standard was enacted on November 2, 1981. Previously, Connecticut's lead standard was substantially identical to the NAAQS of 1.5 ug/m³ for a calendar quarter-year average. This change to a 3-month running average means that a more stringent standard now applies, since there are three times as many data blocks within a calendar year which must be below the limiting concentration of 1.5 ug/m³.

3-Month Running Averages - Three-month running average values are given in Table 27 for the year 1982. These values are also presented in graphical form in Figure 13 for the period 1980-82.

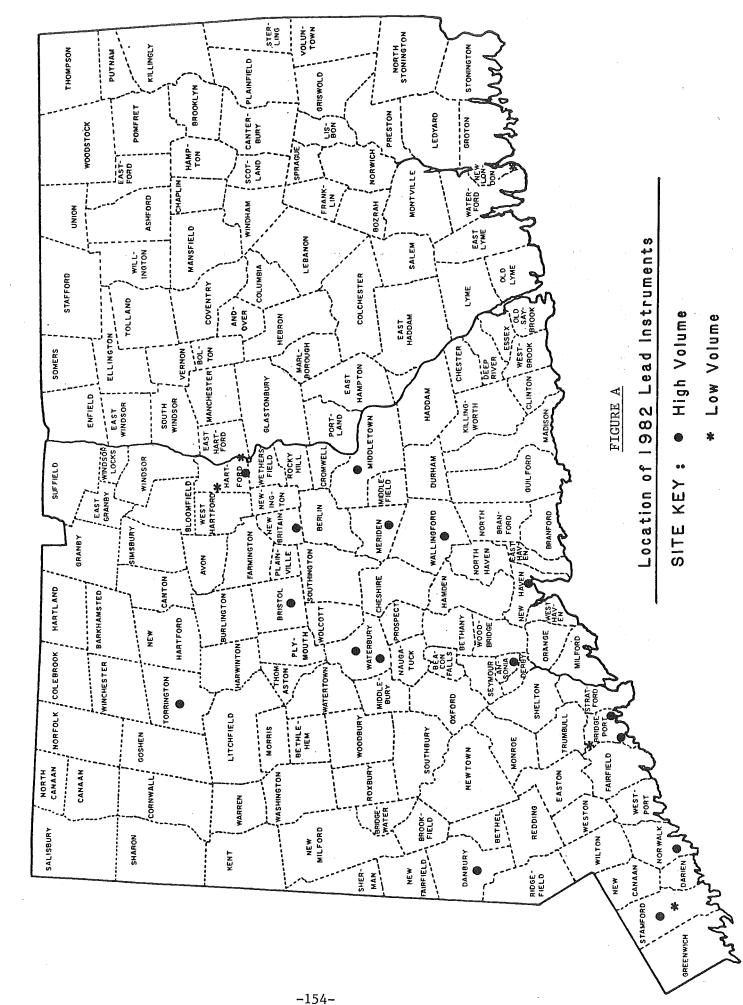


TABLE 2

1982 3-Month Running Average Lead Concentrations (ug/m3)

SITE	Jan. *	Jan. * Feb. * Mar.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
600100000	כ ת	97	A .	0	37	32	33	38	0 42	48		63
	- u								9.0	9	0.42	0.0
enn Lodebolla	0.43	77.0	0.43		70.0			2 1			10	9
■ Bridgeport-010		1		!	 	 	0.52	0.55	0.74	0.79	0.92	0.86
Bridgeport-123	0.42	0.40	0.43	0.45		1	0.49	0.53	0.62	99.0	0.64	0.65
Bristol-001	0.24	0.22	0.28	0.26	0.25	0.22	0.24	0.24	0.24	0.28	0.30	0.30
Danbury-002	0.33	0.31	0.36	0.38	0.39	0.31	0.34	0.33	0.37	0.44	0.49	0.49
Hartford-014	0.35	0.33	0.24	0.25	0.22	0.30	0.34	0.40	0.44	0.51	0.54	0.57
Hartford-015	1	-	1	1	1	1	1	1	1	•	0.67	0.70
Hartford-016	1	1		 - - -	 - -	1	1		! ! !	 - - -	1.09	1.08
Meriden-002	0.38	0.38	0.40	0.36	0.33	0.28	0.33	0.40	0.43	0.49	0.56	0.56
Middletown-003	0.38	0.39	0.43	0.39	0.34	0.27	0.33	0.39	0.42	0.47	0.44	0.44
New Britain-007	0.31	0.28	0.31	0.29	0.28	0.24	0.27	0.31	0.36	0.39	0.39	0.39
New Haven-123	1	!			!!!	!!!!		i ! !	1		0.76	0.71
New London-003	1		1				1		0.27	0.28	0.29	0.28
Norwalk-012	0.37	0.37	0.39	0.42	0.43	0.33	0.33	0.37	0.41	0.44	0.53	0.56
Stamford-001	0.30	0.28	0.33	0.35	0.40	0.38	0.38	0.41	0.43	0.43	0.50	0.50
Stamford-022	1	1	!				0.63	0.69	0.77	0.75	0.74	0.69
Torrington-123	0.41	0.36	0.38	0.35	0.34	0.27	0.28	0.30	0.37	0.47	0.52	0.53
Wallingford-001	0.43	0.38	0.39	0.35	0.32	0.27	0.32	0.40	0.45	0.48	0.52	0.55
Waterbury-007	0.61	0.55	0.54	0.46	0.46	0.43	0.46	0.53	0.60	0.71	0.75	0.76
Waterbury-123	0.52	0.49	0.63	0.75	0.79	0.58	0.61	0.62	0.10	0.80	0.88	0.91

* 3-month running average includes data from the last 2 months of 1981

FIGURE 13

3-MONTH RUNNING AVERAGES FOR LEAD STATION=ANSONIA 003

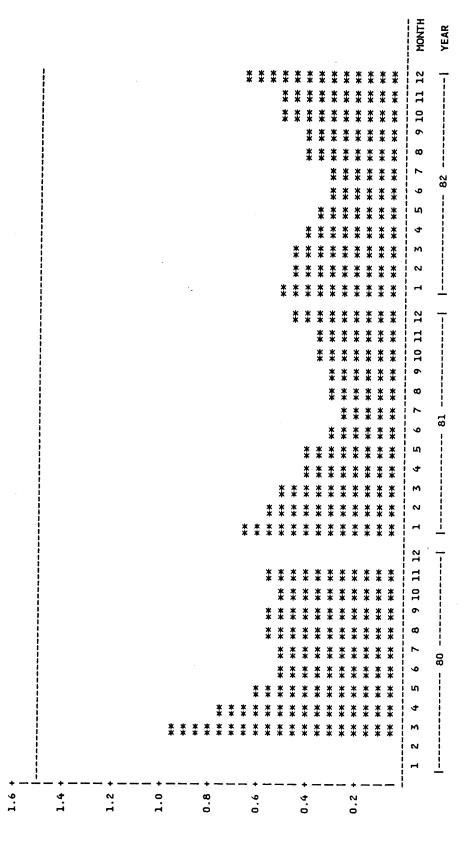


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRIDGEPORT 009

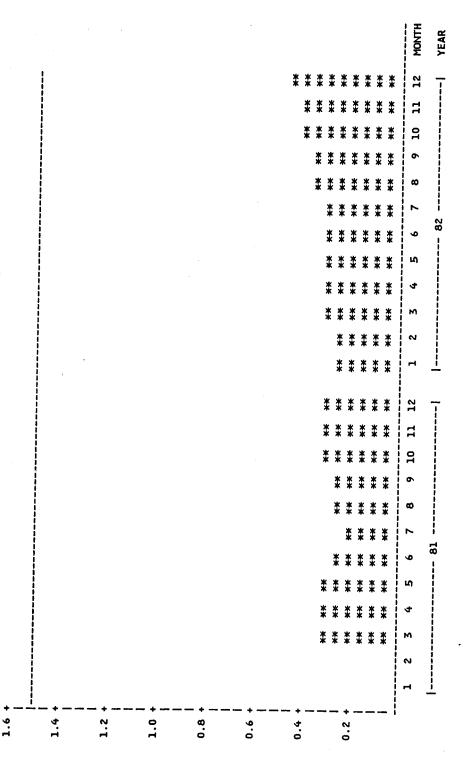


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION-BRIDGEPORT 010

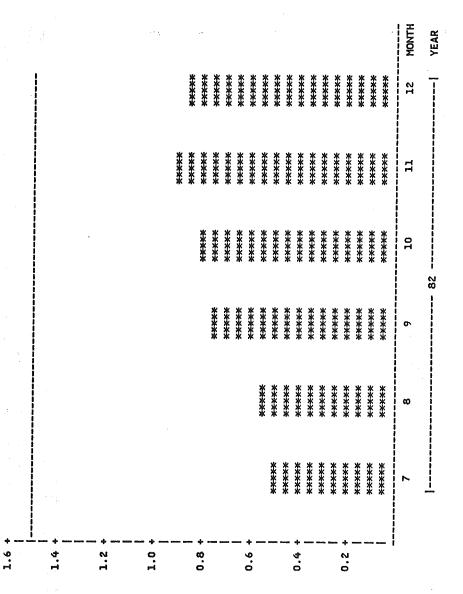


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION-BRIDGEPORT 123

AVG 1.6

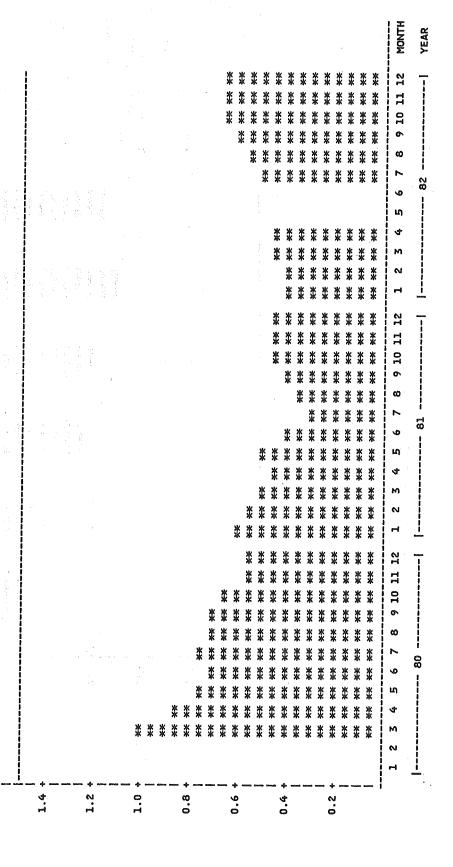


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=BRISTOL 001

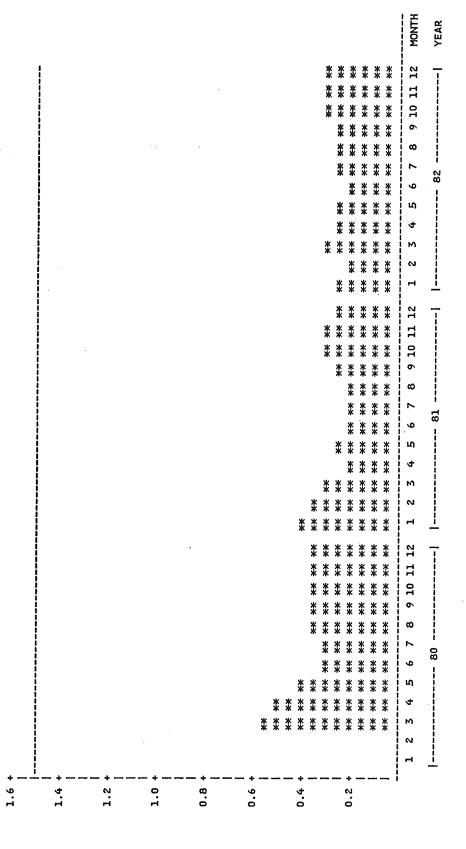


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION-DANBURY 002

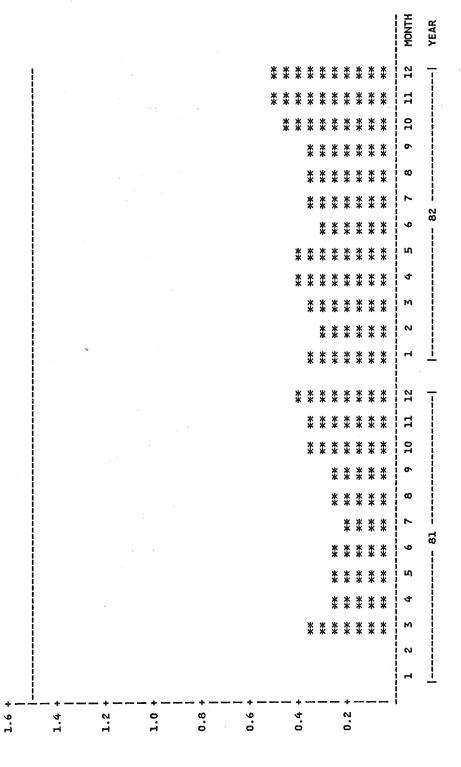


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=HARTFORD 014

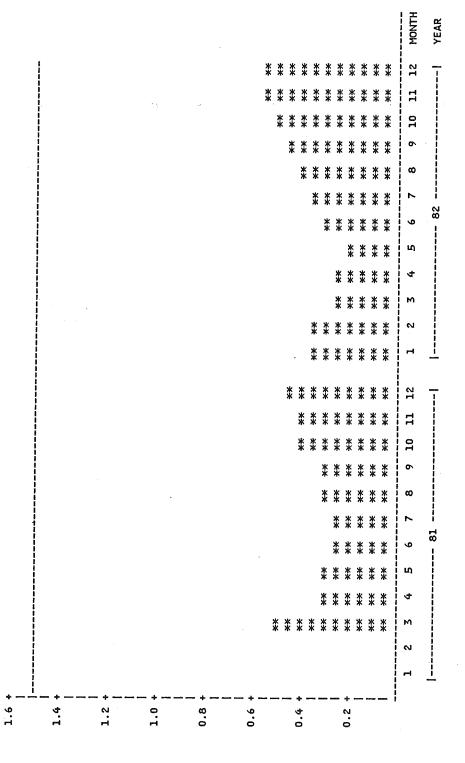


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=HARTFORD 015

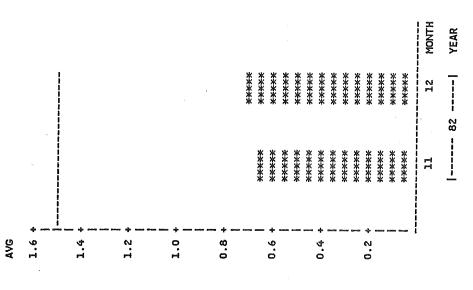
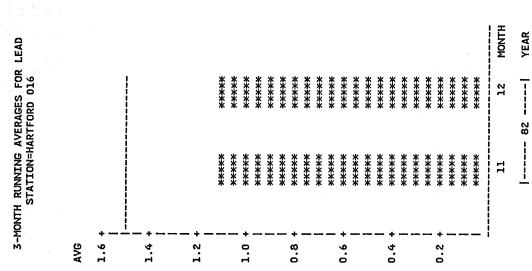



FIGURE 13, continued

|-----|

FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=MERIDEN 002

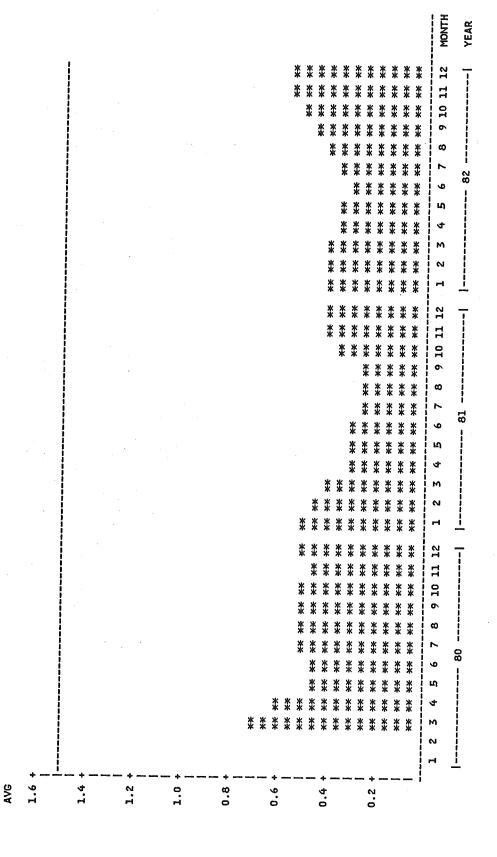


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=MIDDLETOWN 003

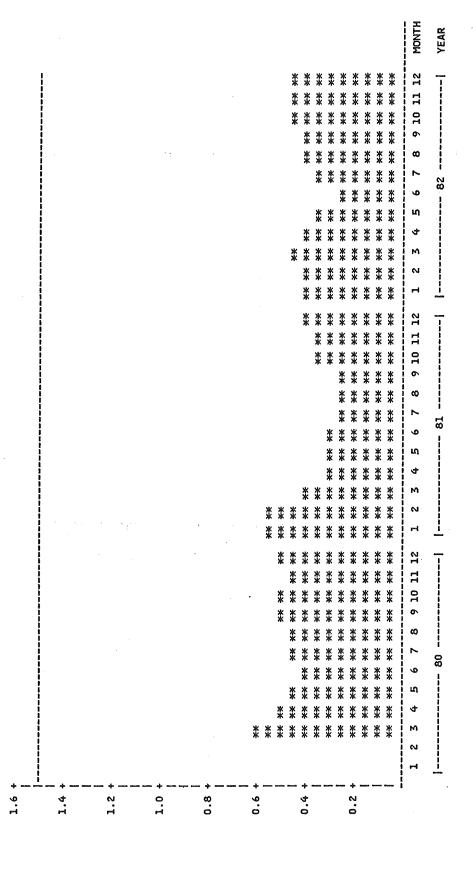


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=NEW BRITAIN 007

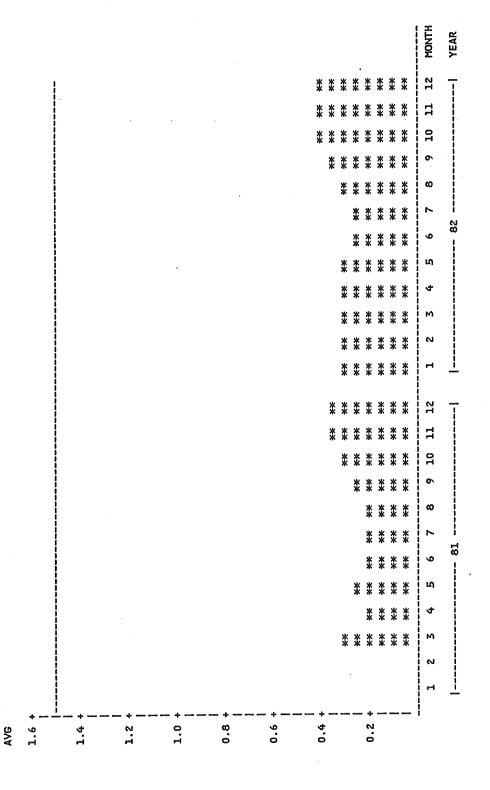


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=NEW HAVEN 123

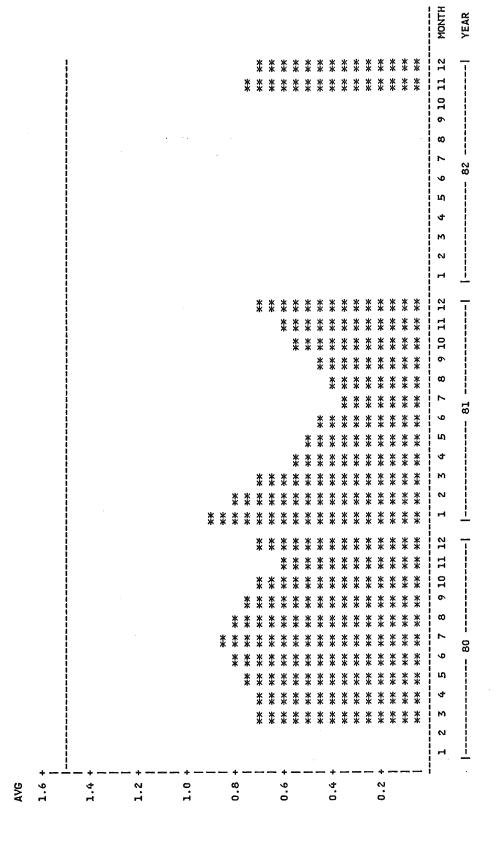


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=NEW LONDON 003

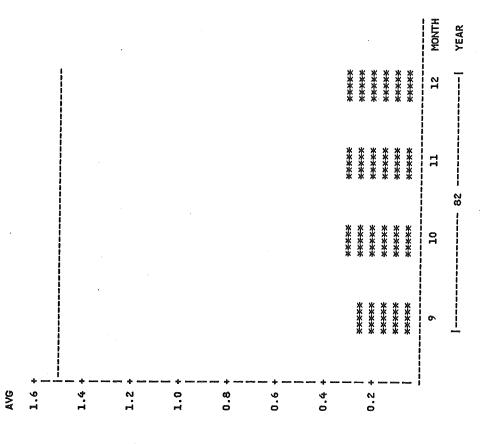


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=NORWALK 012

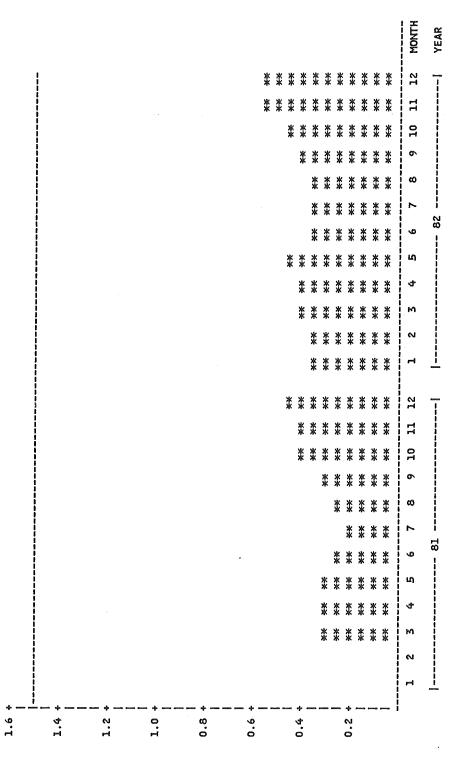


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=STAMFORD 001

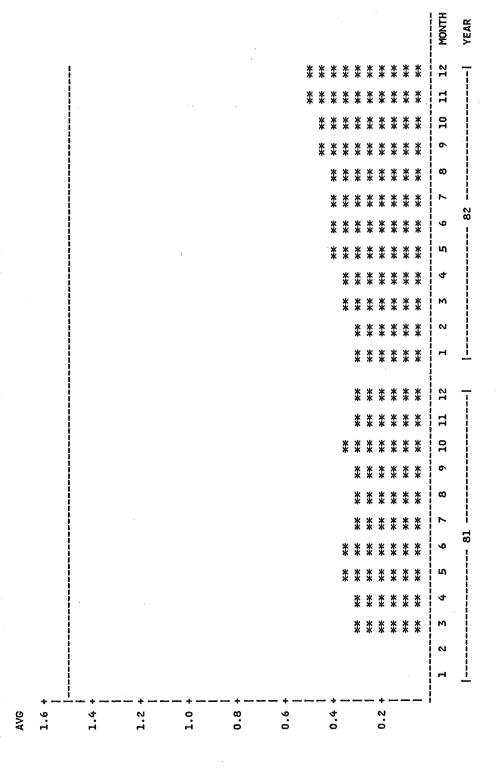


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=STAMFORD 022

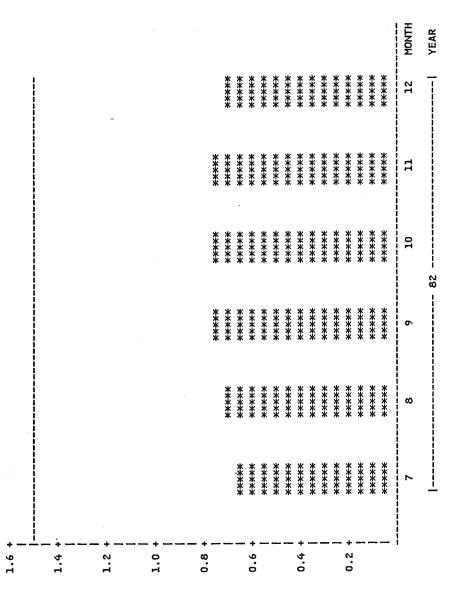


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=TORRINGTON 123

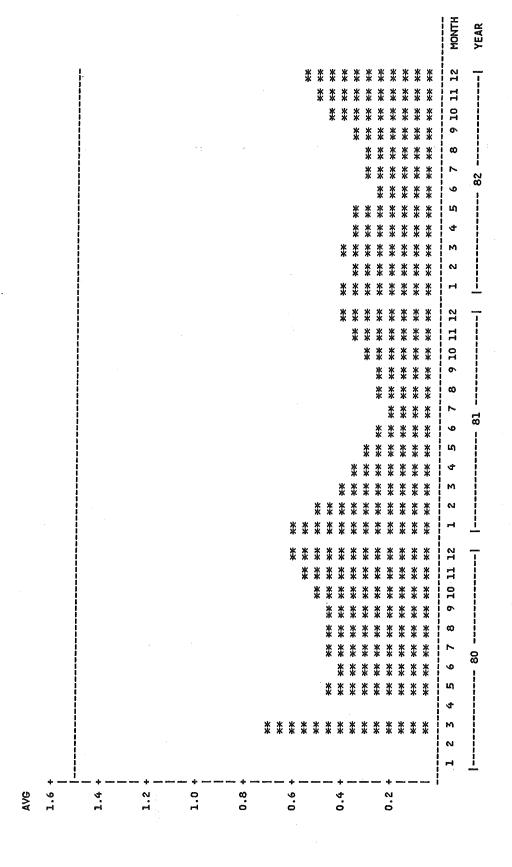


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=WALLINGFORD 001

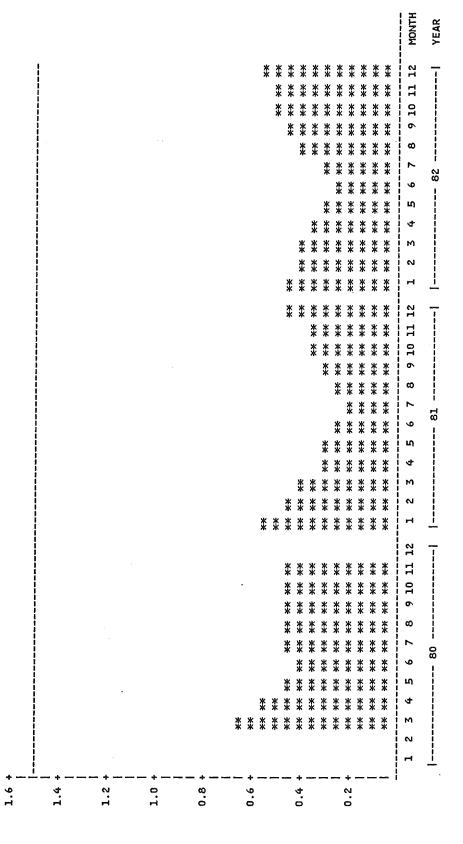


FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION=WATERBURY 007

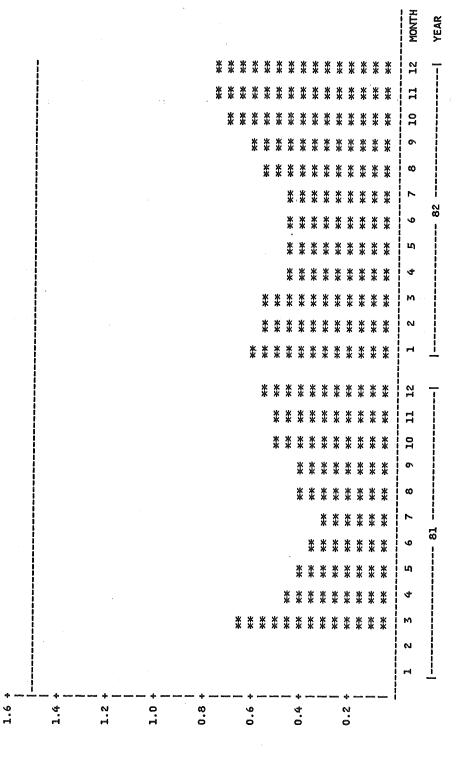
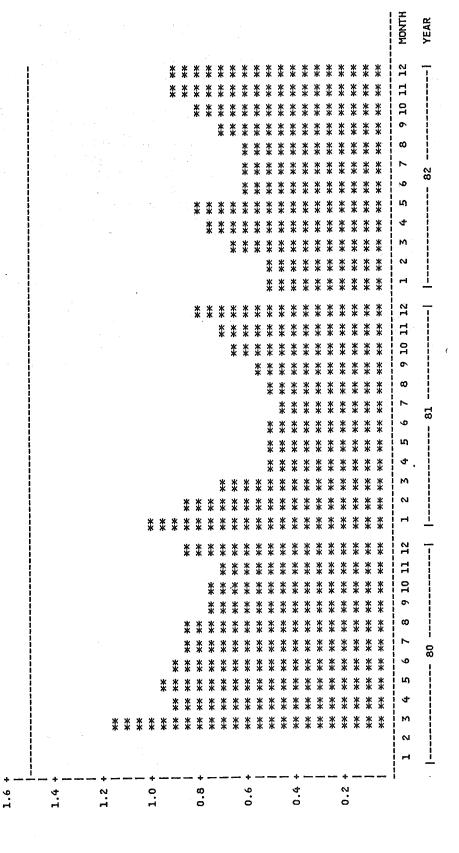



FIGURE 13, continued

3-MONTH RUNNING AVERAGES FOR LEAD STATION-WATERBURY 123

VIII. CLIMATOLOGICAL DATA

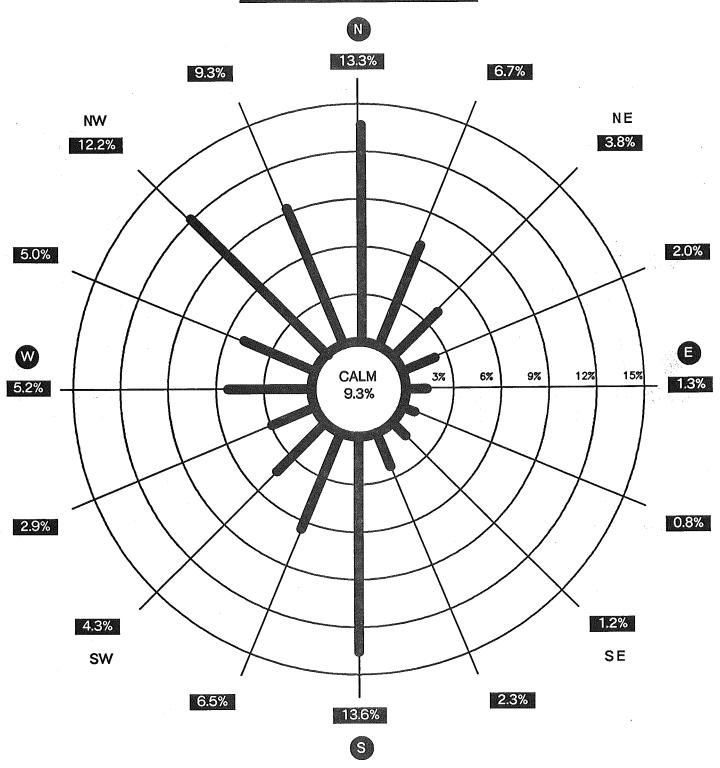
Weather is often the most significant factor influencing short-term changes in air quality and it also has an affect on long-term trends. Shown in Table 28 is climatological information from the National Weather Service Station at Bradley International Airport in Windsor Locks for the years 1981 and 1982. Table 29 contains information from the Weather Service site located at Sikorsky Memorial Airport near Bridgeport. All data are compared to "mean" or "normal" values. Wind speeds and temperatures are shown as monthly and yearly averages. Precipitation data includes the number of days with more than 0.01 inches of precipitation as well as total water equivalent. Also shown are degree days (heating requirement) and the number of days with temperatures exceeding 90°F.

Wind roses for Bradley Airport, and Newark Airport have been developed from 1982 National Weather Service surface observations and are shown in Figures 15 and 17. Wind roses from these stations for 1981 are shown in Figures 14 and 16. The differences between 1981 and 1982 wind roses were discussed earlier in the trend analysis section of the introduction to this Air Quality Summary.

The degree day value for each day is arrived at by subtracting the average temperature of the day from 65°F. This number (65) is used as a base value because it is assumed that there is no heating requirement when the outside temperature is 65°F.

1981 AND 1982 CLIMATOLOGICAL DATA BRADLEX INTERNATIONAL ALREORT WINDSOR LOCKS

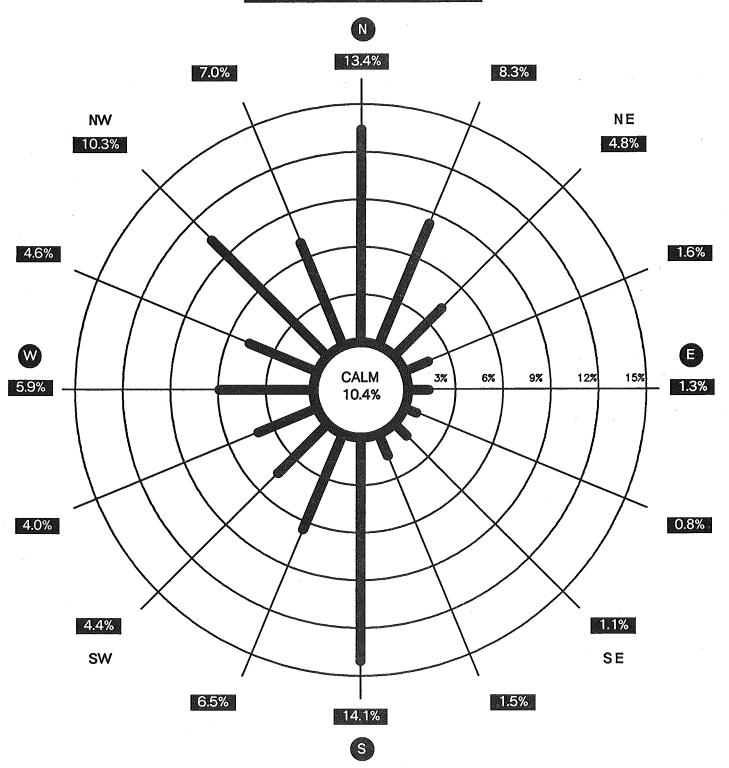
		Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	YEAR	
	Mean &	9.2	9.6	10.0	10.3	0.6	8.2	7.6	7.3	4.7	7.8	8.5	8.7	8.6	
WIND (MPH)	1982	8.5	7.5	7.5	10.9	6.2	7.0	0.9	6.2	ري م	6.2	7.2	8.9	7.1	
AVERAGE WIND SPEED (MPH)	1981	7.0	8 x.	₹ . 8	9.7	ከ •	7.3	₹•9	5.1	L. 9	₹°9	7.8	7.2	J. 7	ation
)F TH . 01)F TON	Meanec	=	10	=	Arra Arra	Ξ	, ;=	10	2	5	œ	1	12	126	lminist
	1982 M	=======================================	1	13	=	5	5	#	ro	6	7	12	13	117	arts Pric Ad
NUMBER C DAYS WIT MORE THAN INCHES C	1981 19	9	16	a	10	7	=	10	O	10	12	1	1	119	Data Cha ommerce Atmosphe ervice
z	Meand	3.55	3.24	3.72	3.72	3.52	3.57	3.53	3.83	3.66	3.15	3.73	3.76	42.98	Local Climatological Data Charts U.S. Department of Commerce National Oceanic and Atmospheric Administration Environmental Data Service
PRECIPITATION IN INCHES WATER EQUIVALENT	1982 M	4.76	2.83	2.23	4.12	3.30	13.60	2.60	14.4	2.41	3.31	3.12	1.32	48.01	Climat Departm nal Oce
PRECI IN W	19811	0.38	7.27	0.27	2.92	2.17	1.37	4.21	0.54	64.4	5.19	2.34	00° †	35.15	Local U.S. Natio
AYS	Normal ^d	1246	1070	911	519	226	5₽	0	12	106	384	711	1141	6350	Extracted From:
DEGREE DAYS	1982	1427	966	871	569	128	†9	-	30	96	416	575	894	2909	tracte
Ĭ.	1981	1456	824	828	380	149	10	0	თ	115	481	635	1048	5935	ä
OF NN IAX.	Meanb		0	0	*	-	ন	80	ro.	-	韓	0	0	19	1905–1982
NUMBER OF DAYS ON WHICH MAX. TEMP. EXCEEDED	1981 . 1982	0	0	0	0	0	0	10	- -	0	o ,	0	0	-	190 1969595 955495
N TEMP	1981	0	0	0	0	***	-	6	N	0	0	0	0	5	d D O D
TO SE	Meana	56.6	27.7	37.1	48.1	59.2	68.0	73.2	71.0	63.6	53.1	42.1	30.3	50.0	Less than 1/2
AVERAGE TEMPERATURES OF	1982	18.8	29.5	36.7	45.8	₽.19	65.0	4. 47	69.5	63.0	51.5	45.8	36.0	8.64	Less t
A.	1981	17.8	35.3	38.1	52.0	61.6	9.69	74.8	70.6	62.5	49.3	43.7	31.0	9.05	· #3
		January	February	March	April	May	June	July	August	September	October	November	December	YEAR	


1981 AND 1982 CLIMATOLOGICAL DATA SIKORSKY INTERNATIONAL AIRPORT STRAIFORD

							1, 1									
			Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	YEAR	
	٠	Mean-	13.2	13.6	13.5	13.0	11.6	10.5	10.0	10.1	11.2	11.9	12.7	13.0	12.0	
WIND MPH)		785	1		ł		1		1	1	1	i		i	į	
AVERAGE WIND		1861	4.11	14.0	13.0	13.5	13			1	1	9.8		1	•	ation
OF TH 0.01 OF TION		Meane	=	10	fra fra	fra fra	dem dem	, თ	&	Ø	σ	7	10	-	117	Local Climatological Data Charts U.S. Department of Commerce National Oceanic and Atmospheric Administration Environmental Data Service
NUMBER OF DAYS WITH MORE THAN .01 INCHES OF PRECIPITATION		1982	10	. 2	13	10	-	ر ار	. म	7	9	7	. Ø.	~	110	harts
N D MOR I		1981	r.	1,4	۲	12	6	~	6	#	5	10	œ	12	11	Data Commerced Atmos
ION S NT	-	Meand	3.64	3.31	3.92	3.84	3.66	3.36	3.66	1 -02	3.55	3.36	3.75	3.71	43.78	Local Climatological Data Charts U.S. Department of Commerce National Oceanic and Atmospheric Environmental Data Service
PRECIPITATION IN INCHES WATER	100 m	1982	5.50	2.47	2.76	3.83	3.02	11.53	3.31	3.14	1.30	1.52	3.13	1.10	42.61	1 Clima Depart onal O(
PREC II	1	1981	0.5₩	99.4	69.0	3.19	1.92	2.10	4.45	0.72	4.50	4.32	1.93	3.65	32.67	Loca U.S. Nati Env
0 2	1	Normal c	1079	955	840	¥98	225	77	0	0	75	261	570	196	5461	Extracted From:
o A A G	ת ששעה	1982	1297	897	832	556	164	72	~	6	99	371	530	809	5614	xtract
ž	37	1981	1320	865	831	165	214	18	0	-	102	544	619	959	5839	щ
OF I IX. EDED		Meanp	0		0	0	檸	•	m	-	串	o	0	0	9	1903-1982 1966-1982 1941-1970 1894-1982
NUMBER OF DAYS ON WHICH MAX. TEMP. EXCEEDED	1	1982	0	0	0	0	0	0	Ŋ	0	0	0	0	0	. N	Q 00 H
NU L WE		1981		0	0	0	0	0	ন	0	0	0	0	0	#	ဗ ပ ႖ ဟ
i	10 Si	Meana	28.3	₹0.8	37.9	6-74	58.4	67.7	73.3	71.9	65.1	54.7	1. 44	33.2	51.1	Less than 1/2
AVERAGE	RATUR	1982	22.9	32.8	37.9	46.3	59.6	63.9	42.9	69.3	64.1					Tess
AV	TEMPERATURES OF	1981	22.2	33.9	38.1	49.3	58.6	0.89	74.0	7.1		50.5	ि पर्य	33.8	50.6	*
			January	February	March	Apr11	A CM	eur!	- cuto	to the second	ach Sust	September October	November	December	YEAR	

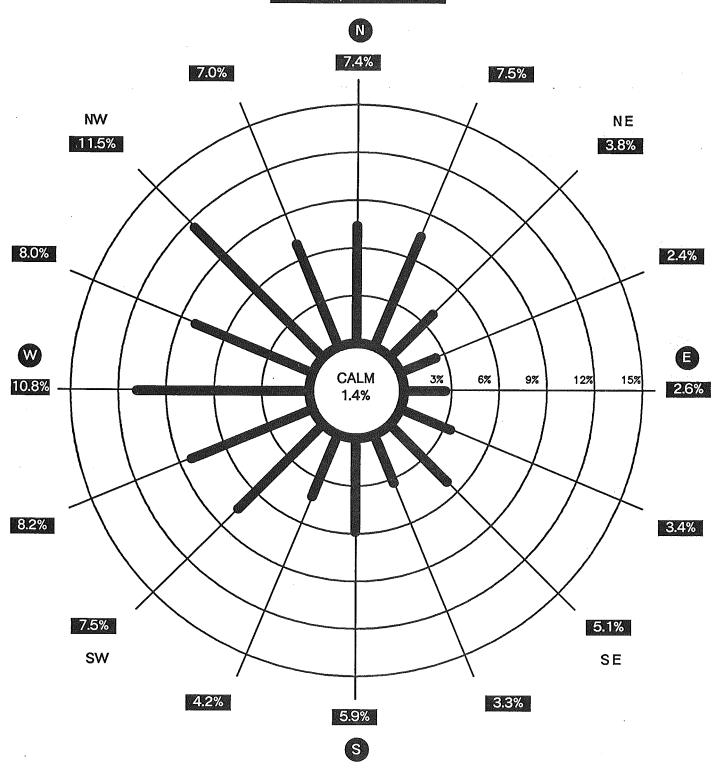
ANNUAL WIND ROSE 1981

BRADLEY INTERNATIONAL AIRPORT


WINDSOR LOCKS, CONNECTICUT

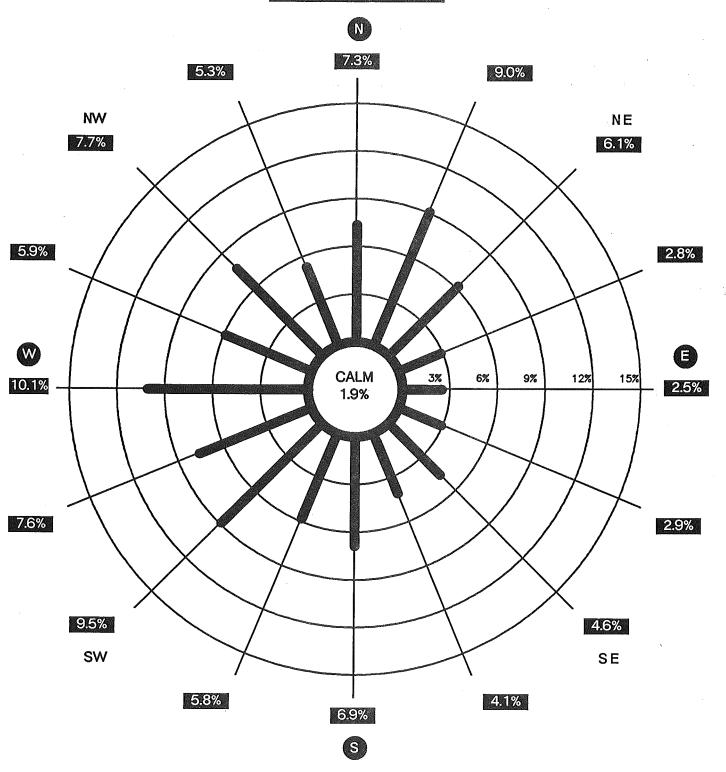
ANNUAL WIND ROSE 1982

BRADLEY INTERNATIONAL AIRPORT


WINDSOR LOCKS, CONNECTICUT

ANNUAL WIND ROSE 1981

NEWARK INTERNATIONAL AIRPORT


NEWARK, NEW JERSEY

ANNUAL WIND ROSE 1982

NEWARK INTERNATIONAL AIRPORT

NEWARK, NEW JERSEY

IX. ATTAINMENT AND NON-ATTAINMENT OF NAAQS IN CONNECTICUT'S AQCR'S

The attainment statuses of Connecticut's four Air Quality Control Regions (AQCR's, see Figure 18) with regard to the National Ambient Air Quality Standards (NAAQS) have been determined for 1982 for the following pollutants: total suspended particulates (TSP); sulfur dioxide (SO₂); ozone (O₃); nitrogen dioxide (NO₂); carbon monoxide (CO); and lead (Pb). Table 30 shows the attainment status of each AQCR for each pollutant. The regions are classified as attainment, non-attainment or unclassifiable. A region is classified non-attainment for a particular pollutant if the region, or any portion thereof, was in violation of any NAAQS for the pollutant at any time during 1980, 1981, or 1982. (The only exception is made for the pollutant lead, for which only two years are examined.) Unclassifiable regions are ones in which there were no monitors with which to determine attainment or non-attainment.

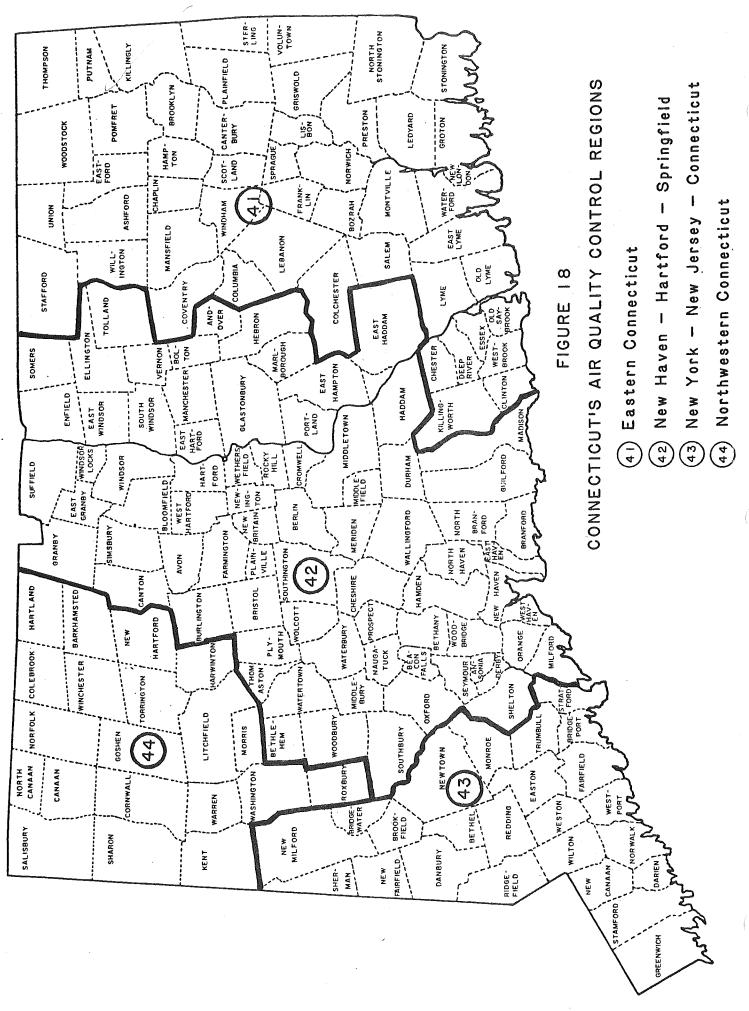


TABLE 30

CONNECTICUT'S COMPLIANCE WITH THE NAAQS (BY AQCR) FOR 1982

	Primary or		AQCR	AQCR	AQCR	AQCR
Pollutant	Secondary	NAAQS	<u>41</u>	42	43	44
TSP	Primary	Annual 24-Hour	A A	A A	A A	A A
	Secondary	Annual 24-Hour	X X	X X	X X	X X
so ₂	Primary	Annual 24-Hour	A A	A A	A A	A A
	Secondary	3-Hour	A	A	A	A
Ozone	Both	l-Hour	Х	X	Х	X
NO ₂	Both	Annual	A	A	A	A
CO	Both	l-Hour 8-Hour	U U	A X	X X	U U
Lead	Both	3-Month	Α .	A	A	A

X = Non-Attainment

U = Unclassifiable

A = Attainment

X. CONNECTICUT SLAMS AND NAMS NETWORK

On May 10, 1979, the U.S. Environmental Protection Agency made public its final rulemaking for ambient air monitoring and data reporting requirements in the "Federal Register" (Vol. 44, No. These regulations are meant to ensure the acceptability of air measurement data, the comparability of data from stations, the cost-effectiveness of monitoring networks, and timely data submission for assessment purposes. regulations address a number of key areas including quality assurance, monitoring methodologies, network design and probe siting. Detailed requirements and specific criteria are provided which form the framework for ambient air quality monitoring. These regulations apply to all parties conducting ambient air quality monitoring for the purpose of supporting or complying with environmental regulations. In particular, state/local control industrial/private concerns involved agencies and monitoring are directly influenced by specific requirements, compliance dates and recommended guidelines.

Quality Assurance

The regulations specify the minimum quality assurance requirements for State and Local Air Monitoring Stations (SLAMS) networks, National Air Monitoring Stations (NAMS) networks, and Prevention of Significant Deterioration (PSD) air monitoring. Two distinct and equally important functions make up the quality assurance program: assessment of the quality of monitoring data by estimating their precision and accuracy, and control of the quality of the data by implementation of quality control policies, procedures, and corrective actions. (See Part F of Section I, Quality Assurance).

The data assessment requirements entail the determination of precision and accuracy for both continuous and manual methods. A one-point precision check must be carried out at least once every other week on each automated analyzer used to measure SO₂, NO₂, CO and O₃. Standards from which the precision check test data are derived must meet specifications detailed in the regulations. For manual methods, precision checks are to be accomplished by operating co-located duplicate samplers. In 1982, Connecticut maintained three co-located TSP monitors. They were: Bridgeport 009, Hartford 003, and Waterbury 005.

Accuracy determinations are accomplished by performing analyzer audits via special audit gases for automated analyzers, and via reference flow devices for hi-vols. For SLAMS analyzers, accuracy audits must be performed on each analyzer at least once per calendar year. Each PSD analyzer must be audited at least once each calendar quarter. All precision and accuracy data are

derived through calculation methods specified by the regulations, with the results reported quarterly on Data Assessment Report Forms. The NAMS network is actually part of the SLAMS network; so the SLAMS accuracy determination also apply to to the NAMS network. The distinguishing characteristics of NAMS are: 1) only continuous instruments are used to monitor gaseous pollutants; 2) the regulations specify a minimum number and locations for them; and 3) the data, in addition to being included in the annual report, are reported quarterly to EPA.

In order to control the quality of data, the monitoring program must have operational procedures for each of the following activities:

- 1. Installation of equipment,
- Selection of methods, analyzers, or samplers,
- Zero/span checks and analyzer adjustments,
- 4. Calibration,
- 5. Control limits for zero/span and other control checks, and respective corrective actions when such limits are exceeded,
- 6. Control checks and their frequency,
- 7. Preventive and remedial maintenance,
- 8. Calibration and zero/span checks for multi-range analyzers,
- 9. Recording and validating data, and
- 10. Documentation of quality control information.

Monitoring Methodologies

Except as otherwise stated within the regulations, the monitoring method used must be "reference" or "equivalent," as designated by the EPA. Table 31 lists methods used in Connecticut's network in 1982 which were on the EPA-approved list as of 9/18/80. Additional updates to these approved methods are provided through the "Federal Register."

Network Design

The regulations also describe monitoring objectives and general criteria to be applied in establishing the SLAMS networks and for choosing general locations for new monitors. Criteria are also presented for determining the location and number of monitors. These criteria serve as the framework for all State Implementation Plan (SIP) monitoring networks that must be complete and in operation by January 1, 1983.

The SLAMS network must be designed to meet four basic monitoring objectives: (1) to determine the highest pollutant concentration in the area; (2) to determine representative concentrations in areas of high population density; (3) to determine the ambient impact of significant sources or source categories; and (4) to determine general background concentration

levels. Proper siting of a monitor requires precise specification of the monitoring objectives, which usually includes a desired spatial scale of representativeness. Within the regulations, spatial scales of representativeness are detailed on a pollutant and monitoring-objective basis. The 1982 SLAMS and NAMS networks in Connecticut are presented and described in Table 32.

Probe Siting

Location and exposure of monitoring probes has been an area of confusion for a number of years because of conflicting guidelines and a lack of guidance or recommended criteria. The probe siting criteria promulgated in the regulations are specific. They are also sufficiently inclusive to define the requirements for ensuring the uniform collection of compatible and comparable air quality data.

These criteria are detailed by pollutant and include vertical and horizontal probe placement, spacing from obstructions and trees, spacing from roadways, probe material and sample residence time, as well as various other considerations. A summary of the probe siting criteria is presented in Table 33. The siting criteria generally apply to all spatial scales except where noted. The most notable exceptions relate to spacing from roadways which is dependent on traffic volume.

For the reactive gases SO₂, NO₂, and O₃, the regulations specify borosilicate glass, FEP teflon or their equivalent as the only acceptable probe materials. Additionally, in order to minimize the effects of particulate deposition on probe walls, sampling probes for reactive gases must have residence times of less than 20 seconds by specifications.

TABLE 31
U.S. EPA APPROVED MONITORING METHODS USED IN CONNECTICUT IN 1982

	Equivalent		Thermo Electron 43 (0.5)				
Automated Methods	Reference		Thermo E	Bendix 8501-5CA (50)	Bendix 8002 (0.5)	Thermo Electron 14 B/E (0.5) Monitor Labs 8440E (0.5) Bendix 8101-C (0.5)	
Manual Methods	Reference	High Volume Method					High Volume Method
	Pollutant	TSP	202	00	03	NO.2	Lead

() = approved range

TABLE 32

1982 SLAMS AND NAMS SITES

	Spatial Scale and Representativeness	Neighborhood	Population M.Cox.Neighborhood Population M.Cox.Neighborhood Population M.Cox.Neighborhood Population Neighborhood Population Neighborhood Background Neighborhood High Conc. Urban Neighborhood High Conc. Urban	Micro Micro Micro
	Monitoring Objective	Population High Conc. Population Population Population Population	Population M.Coc. Population M.Coc. Population Population Background High Conc. High Conc. High Conc. High Conc.	High Conc. High Conc. High Conc. High Conc.
	Operating Schedule		Contin.	Contin. Contin. Contin. Contin.
LEAD	Analytic Method	Atomic Abs.	Chemiluminescent	CARBON MONOXIDE NDIR NDIR NDIR
	Samp. Meth.		Chemilu Chemilu Chemilu Chemilu Chemilu Chemilu Chemilu Chemilu Chemilu Chemilu	CARR NDIR NDIR NDIR NDIR
	SLAMS or NAMS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ννν Σνχννχχχχ	พพพพพ
	Site	003 009 001 001 007 007 123 123 123 123 123	123 003 123 123 003 017 6005 6007	004 012 002 007 020
	Urban Area	Bridgeport Bridgeport Bridgeport Bristol Danbury Hartford Meriden New Haven Norwalk Stamford Torrington New Haven Waterbury	Bridgeport Hartford New Haven Bridgeport Danbury Hartford Stamford New London Mariaten Markford New Haven Hareford Nowe Bridgeport (NYC Down-	wind) Bridgeport Hartford New Britain New Haven
	TOWD	Ansonia Bridgeport Bridgeport Bristol Danbury Hartford Meriden Middletown New Britain New Haven Norwalk Stamford Torrington Wallingford Waterbury	Bridgeport E. Hartford New Haven Bridgeport Danbury E. Hartford Greenwich Pt. Groton Middletown New Haven Stafford Stratford	Bridgeport Hartford New Britain New Haven Stamford

TABLE 32, Continued

1982 SLAMS AND NAMS SITES

TOTAL SUSPENDED PARTICULATES

			SLAMS	((,	4000	200 trot	Spatial Scale and
Town	Urban Area	Site	NAMS	Meth.	Method	Schedule	Objective	ntative
		ć	U		0.1.40E+2017	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Population	Nejabborhood
	bridgeport	500	nΖ			6-dav	Population	Ne
	oridgeport pridoport	- o	2 2			6-dav	THOR CORE.	Neighborhood
or regeptor t	100000	100	z	Hi-Vol	Gravimetric	3-day	High Conc.	Neighborhood
ariageport	pricepol t	001	į v:	Hi-Vo)	Gravimetric	6-day	Population	Neighborhood
2		100	v:	Hi-Vol	Gravimetric	3-day	Background	Regional
Sar I Ing to II	Danhury	002	z	Hi-Vol		6-day		κ. Ne i
Janbury	Danbury	123	z	Hi-Vo1		6-day	High Cone. P.	Pop Neighborhood
January	Hartford	004	: v	Hi-Vol	Gravimetric	6-day	Population	
מייישר שייים מייי	Stamford	008	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
1 + 4 - 2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	Tartford	003	z	Hi-Vol	Gravimetric	3-day	High Conc.	Neighborhood
10 T T T T T T T T T T T T T T T T T T T	Hartford	013	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
7 - 4 - 6 - 7	101010	110	z	Hi-Vo]	Gravimetric	6-day	High Conc.	Neighborhood
7a7 L 1 0 L 0	10 1 10 T	001	· v	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
U	1 H N C N	001	v	Hi-Vol	Gravimetric	3-day	Background	Regional
10 T T O	Moriden	.00	z	Hi-Vo]	Gravimetric	6-day	High Conc.	Neighborhood
מפונים של מים		800	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
10 - CT - C		tarthrod 003	· v	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Middlerom.	Now Haven By the	₹-002 	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
7	Waterbury 60 1	001	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
20 00 10 10 10 10 10 10 10 10 10 10 10 10	Harreford) New	007	z	Hi-Vol	Gravimetric	3-day		M. Cows- Neighborhood
	Hatterra Britain	£1008	z	Hi-Vol	Gravimetric	6-day		Sep. Neighborhood
	· Section	600	z	Hi-Vol	Gravimetric	6-day		Ne.
	Za Z	002	z	Hi-Vol	Gravimetric	6-day	High Conc.	Neighborhood
	New Haven	013	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
		123	z	Hi-Vol	Gravimetric			Neighborhood
3	Norwalk Andrea	001	S	Hi-Vol	Gravimetric	3-day		Neighborhood
X 0 3 L 0 X	Norwalk	005	z	Hi-Vol	Gravimetric	3 6-day	High Conc.	Neighborhood
NOT * Parity	Norwalk	012	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Norwich	New London/	001	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
	Norwich							
Stamford	Stamford	100	z	Hi-Vol	Gravimetric	6-day		
Stamford	Stamford	200	z	Hi-Vol	Gravimetric	6-day	-	A. Cox Neighborhood
Stanford	Stamford	021	z	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Stratford	Bridgeport	002	S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood
Voluntown	NON E	001	S	Hi-Vol	Gravimetric	3-day	Background	Regional
Wallingford	New Haven	001	z	Hi-Vol	Gravimetric	6-day	Population	Ne
Waterbury	Waterbury	005	z	Hi-Vol	Gravimetric	6-day	High-Cone. P.P.	Ne.
Waterbury	Waterbury	900	S	Hi-Vol	Gravimetric	6-day	Population	
Waterbury	Waterbury	007	z	Hi-Vol	Gravimetric	3-day		W. Cow. Neighborhood
Willimantic	Waterbury NOAR		S	Hi-Vol	Gravimetric	6-day	Population	Neighborhood

TABLE 32, Continued
1982 SLAMS AND NAMS SITES

SULFUR DIOXIDE

	Spatial Scale and Representativeness		Poortlation & Co. Neighborhood	Toodroddo: aN	Total I	מסמיים או	+ich Cone Smare Note	Apprilation Willey Not Othorhood		Neighborhood
:	Monitoring Objective	Population	Pegulation	Population	Background	Population	Tiop Cope A	Poortotton	High Cond	Population
	Operating Schedule	Contin.	Contin.	Contin.	Contin.	Contin.	Contin.	Contin.	Contin	Contin.
	Samping & Analytic Method	Pulsed Fluorescence	Pulsed Fluorescence	Pulsed Fluorescence	Pulsed Fluorescence	Pulsed Fluorescence	Pulsed Fluorescence	Pulsed Fluorescence	Pulsed Fluorescence	Pulsed Fluorescence
SLAMS	NAMS	001	123	123	017	123	002	123	123	123
	Site	S	z	S	S	S	S	z	S	S
	Urban Area	Bridgeport	Bridgeport	Danbury	Stamford	Hartford	Bridgeport	New Haven	Stamford	Waterbury
	L	Bridgeport	Bridgeport	Danbury	Greenwich	Hartford	Milford	New Haven	Stamford	Waterbury

TABLE 33

SUMMARY OF PROBE SITING CRITERIA

Other Spacing Criteria	Should be >20 meters from trees. Distance from sampler to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler. Must have unrestricted airflow 270 degrees around the sampler. No furnace or incineration flues should be nearby. ^C Must have minimum spacing from roads. This varies with height of monitor and spatial scale.	Should be >20 meters from trees. Distance from inlet probe to obstacle, such as a building, must best twice the height the obstacle protrudes above the inlet probe. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. No furnace or incineration flues should be nearby.	Must be >10 meters from intersection and should be at a midblock location. Must be 2-10 meters from edge of nearest traffic lane. Must have unrestricted airflow 180 degrees around the inlet probe.	Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. Spacing from roads varies with traffic. ^d
			3.	1.
Height Above Ground,	2 - 15	7	7	7
Distance from Supporting Structure, Meters Vertical Horizontal	, , , , , , , , , , , , , , , , , , ,			7
Distance from Structure, Vertical		3 - 15	3 ± 1/2	ಲ 1 2
Scale	ווא	114	Micro	Middle Neighborhood
Pollutant	TSP	202	00	

TABLE 33, continued

SUMMARY OF PROBE SITING CRITERIA

Other Spacing Criteria	Should be >20 meters from trees. Distance from inlet probe to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building.	Should be >20 meters from trees. Distance from inlet probe to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the inlet probe. Must have unrestricted airflow 270 degrees around the inlet probe, or 180 degrees if probe is on the side of a building. Spacing from roads varies with traffic.d
	- 2	
Height Above Ground, Meters	3 1 5	7
Distance from Supporting Structure, Meters Vertical Horizontal	7	7
Distance fr Structur Vertical	7	ε ι π
Scale	A 1 1	L L A
Pollutant	03	N 0 2

When probe is located on rooftop, this separation distance is in reference to walls, parapets, or penthouses located on the roof. Sites not meeting this criterion would be classified as middle scale. Sites not meeting this criterion would be classified as middle scale. Distance is dependent on height of furnace or incineration flue, type of fuel or waste burned, and quality of fuel (sulfur and ash content). This is to avoid undue influences from minor pollutant sources. Distance is dependent upon traffic ADT, pollutant and spatial scale. ں ہے σ

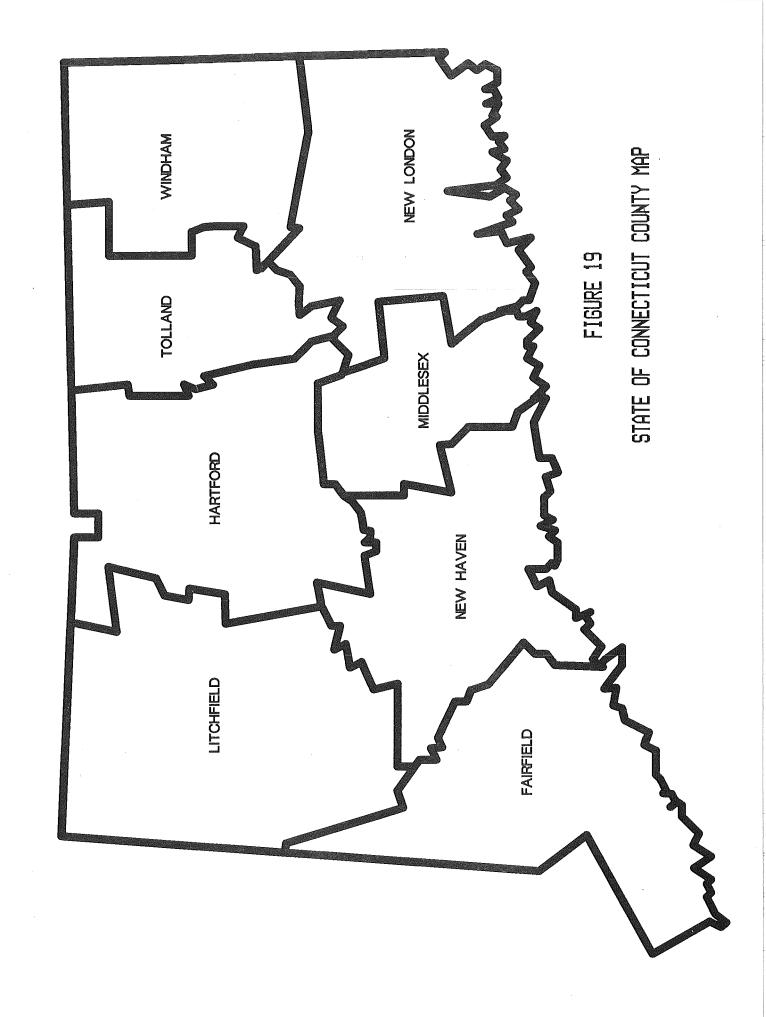
XI. EMISSIONS INVENTORY

Connecticut's computerized emissions inventory contains two separate components — a point source file of 12,000 stationary sources and an area source file of small sources, such as home furnaces and transportation activities, which are too small to be treated individually. The Compilation of Air Pollutant Emission Factors, designated as AP-42, was used to compute estimated emissions for both point and area sources. Emission factors for motor vehicles were calculated at an annual average temperature of 50°F using MOBILE3.

Table 34 summarizes the actual annual in-state emissions of each of the five (5) major air pollutants in Connecticut -- TSP, SO₂, CO, VOC, and NO₂ -- by county, for 1982. A quick scan of the table reveals two things. First, the most populous counties have the largest pollutant totals; second, excluding SO₂ which is largely generated by utilities, area sources (mobile sources in particular) account for the bulk of the total emissions.

County names and geographic locations are displayed in Figure 19, which also serves as a reference for the charts that follow.

Figures 20 through 34 give various visual displays of the level of emissions for each of the major air pollutants. Figures 20, 23, 26, 29, and 32 are pie charts that show the percent of each air pollutant for Connecticut's eight (8) counties. Figures 21, 24, 27, 30, 33 are pictorial displays of emissions by county, where the darker areas indicate higher emission levels. Figures 22, 25, 28, 31, 34 are three dimensional graphs of each county's contribution to statewide emissions.

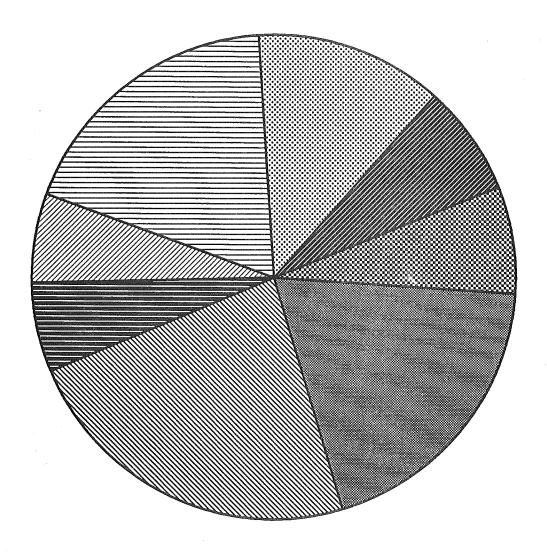

TABLE 34

1982 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION
EMISSIONS INVENTORY BY COUNTY *

TONS PER YEAR

•						
		TSP	SO2	CO	VOC	NOX
Fairfield	Area Point	7,070.3 <u>1,799.5</u> 8,869.8	5,945.3 26,840.9 32,786.2	183,554.3 2,869.0 186,423.3	36,397.0 <u>5,755.0</u> 42,152.0	26,668.7 11,539.5 38,208.2
Hartford	Area Point	9,467.4 1,274.3 10,741.7	6,667.3 4,160.5 10,827.8	228,007.7 1,597.0 229,604.7	42,762.1 <u>4,409.0</u> 47,171.1	33,153.9 3,401.4 36,555.3
Litchfield	Area Point	2,436.4 313.5 2,749.9	1,565.2 774.2 2,339.4	44,436.4 <u>43.4</u> 44,479.8	9,629.0 <u>653.9</u> 10,282.9	6,303.1 <u>311.6</u> 6,614.7
Middlesex	Area Point	2,102.7 609.6 2,712.3	1,217.6 5,266.2 6,483.8	39,624.2 446.4 40,070.6	8,521.4 <u>994.1</u> 9,515.5	6,564.4 4,337.1 10,901.5
New Haven	Area Point	7,197.9 <u>1,297.1</u> 8,495.0	5,820.1 <u>23,145.1</u> 28,965.2	164,824.5 1,042.2 165,866.7	33,446.0 5,523.4 38,969.4	26,792.8 <u>9,961.2</u> 36,754.0
New London	Area Point	4,779.7 1,025.9 5,805.6	2,138.5 12,694.4 14,832.9	82,473.6 412.4 82,886.0	17,670.2 1,649.0 19,319.2	11,415.8 <u>4,760.3</u> 16,176.1
Tolland	Area Point	2,194.7 1,200.7 3,395.4	1,017.5 879.2 1,896.7	39,145.7 927.1 40,072.8	8,308.5 1,483.4 9,791.9	5,637.7 316.3 5,954.0
Windham	Area Point	2,933.2 338.9 3,272.1	850.4 <u>754.2</u> 1,604.6	40,524.7 175.6 40,700.3	8,827.5 1,742.9 10,570.4	3,949.0 316.3 4,265.3
TOTAL	AREA POINT	38,182.3 <u>7,859.5</u> 46,041.8	25,221.9 74,514.7 99,736.6	822,591.1 	165,561.7 22,210.7 187,772.4	120,485.4 <u>34,943.7</u> 155,429.1

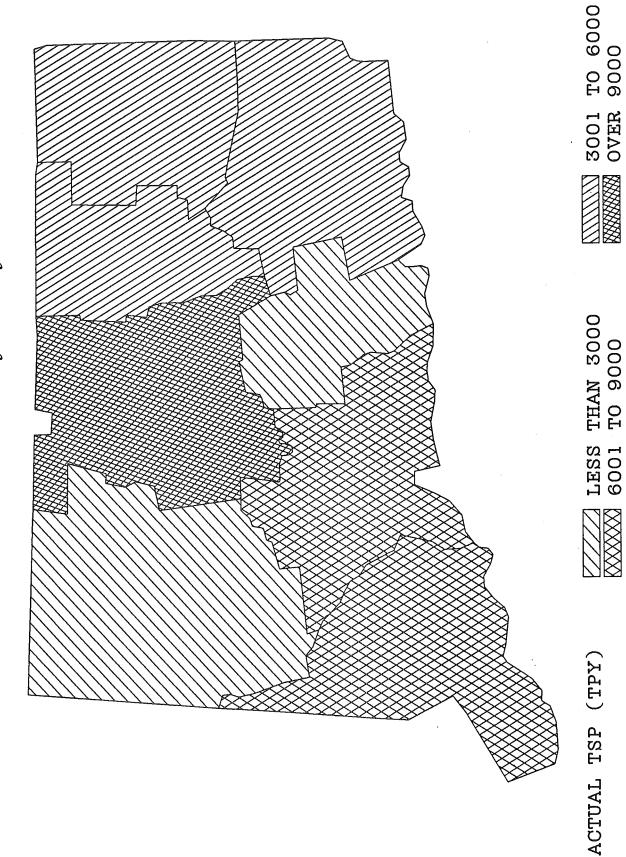
^{*} This inventory is based on actual operating data for 1982, such as actual fuel use and actual material throughputs. MOBILE3 is used to produce mobile source emission factors for an average annual temperature of 50 degrees F. NOX emissions are expressed as NO2.



1982 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

EMISSIONS INVENTORY BY COUNTY

TOTAL SUSPENDED PARTICULATES


TOTAL TONS PER YEAR - 46,042

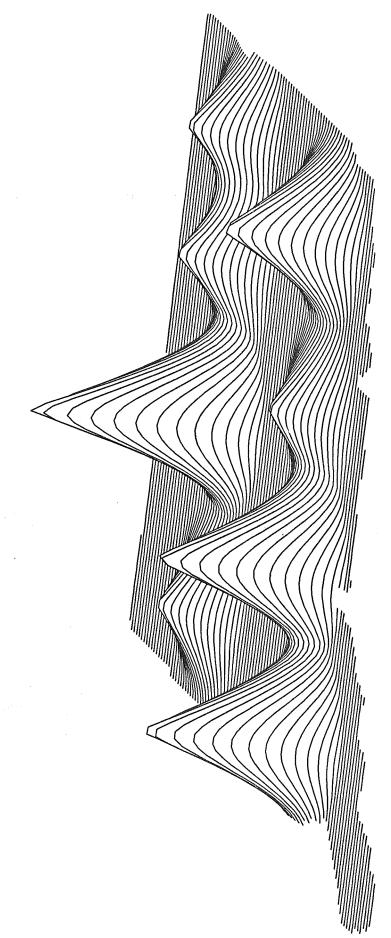
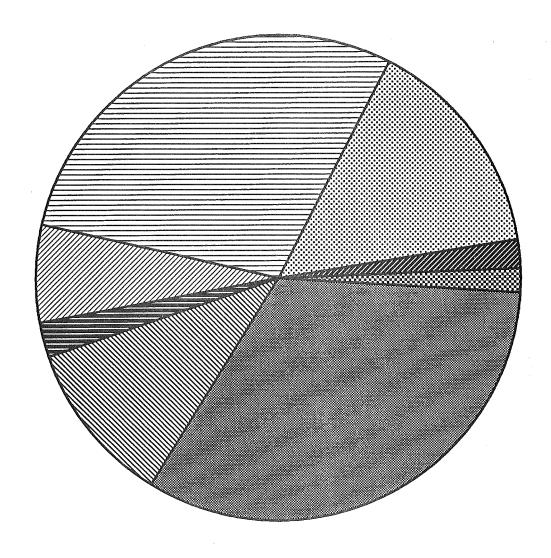

- FAIRFIELD 19.3%
- MARTFORD 23.3%
- LITCHFIELD 6.0%
- MIDDLESEX 5.9%
- ☐ NEW HAVEN 18.4%
- NEW LONDON 12.6%
- **TOLLAND** 7.4%
- **₩** WINDHAM 7.1%

Figure 21

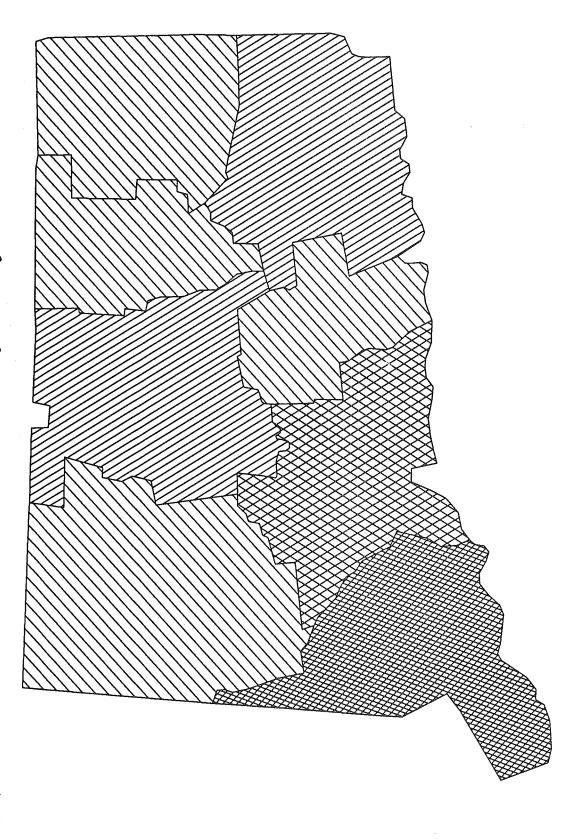
1982 TOTAL SUSPENDED PARTICULATES
Total Emissions by County

1982 TOTAL SUSPENDED PARTICULATES Total Emissions by County


Three Dimensional View of TSP Emissions

1982 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

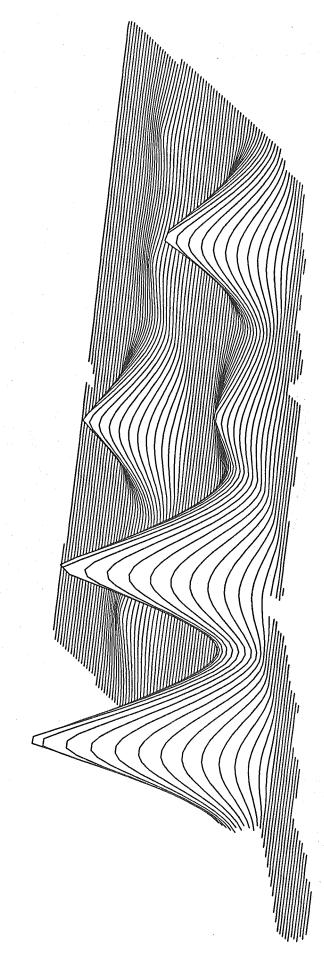
EMISSIONS INVENTORY BY COUNTY


SULFUR DIOXIDE

TOTAL TONS PER YEAR - 99,737

- **FAIRFIELD** 32.9%
- LITCHFIELD 2.3%
- ☑ MIDDLESEX 6.5%
- NEW HAVEN 29.0%
- ™ NEW LONDON 14.9%
- **◯** WINDHAM 1.6%

1982 SULFUR DIOXIDE Total Emissions by County

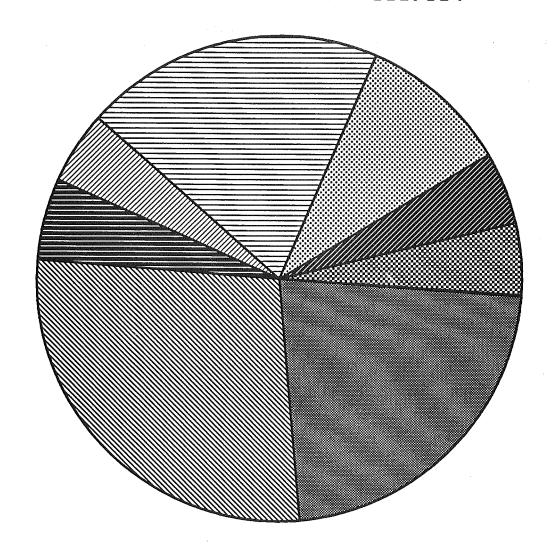

ACTUAL SO2 (TPY)

ZZ LESS THAN 10,000

10,001 TO 20,000

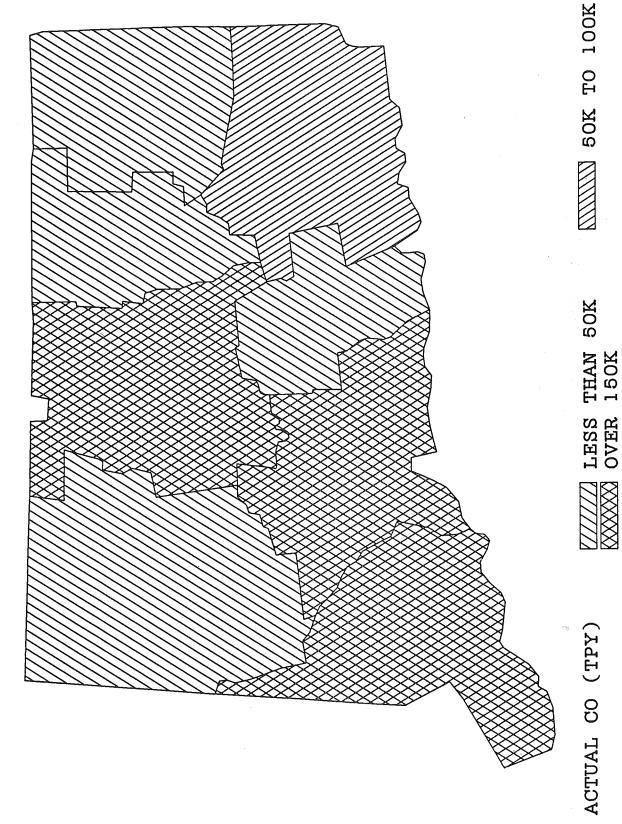
Figure 25

1982 SULFUR DIOXIDE Total Emissions by County

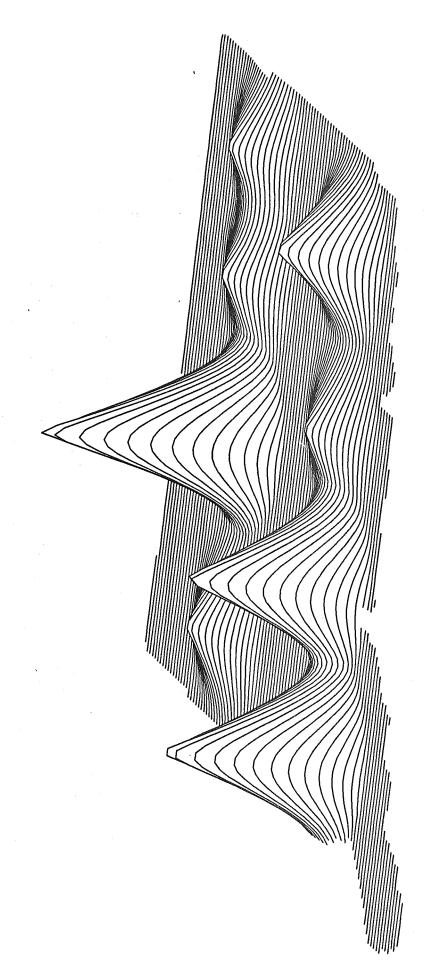


1982 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

EMISSIONS INVENTORY BY COUNTY


CARBON MONOXIDE

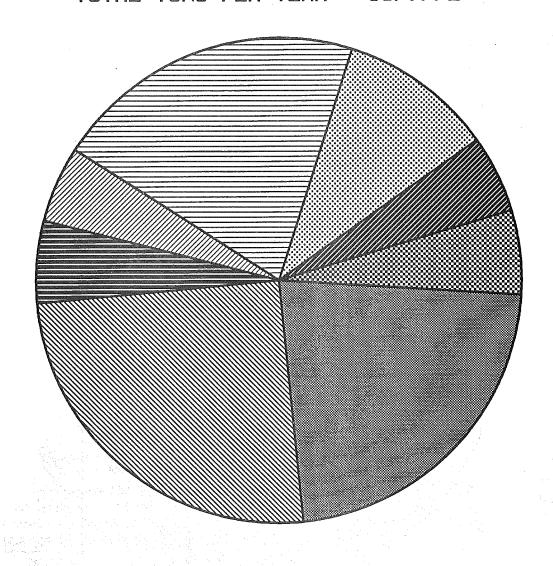
TOTAL TONS PER YEAR - 830,104



- FAIRFIELD 22.5%
- LITCHFIELD 5.4%
- MIDDLESEX 4.8%
- **NEW HAVEN 20.0%**
- MEW LONDON 10.0%
- **TOLLAND** 4.8%
- **◯ WINDHAM 4.9%**

1982 CARBON MONOXIDE Total Emissions by County

1982 CARBON MONOXIDE Total Emissions by County


Three Dimensional View of CO Emissions

1982 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

EMISSIONS INVENTORY BY COUNTY

VOLATILE ORGANIC COMPOUNDS

TOTAL TONS PER YEAR - 187,772

- FAIRFIELD 22.4%
- HARTFORD 25.1%
- LITCHFIELD 5.5%
- MIDDLESEX 5.1%
- NEW HAVEN 20.8%
- NEW LONDON 10.3%
- TOLLAND 5.2%
- **₩ WINDHAM 5.6%**

1982 VOLATILE ORGANIC COMPOUNDS Total Emissions by County

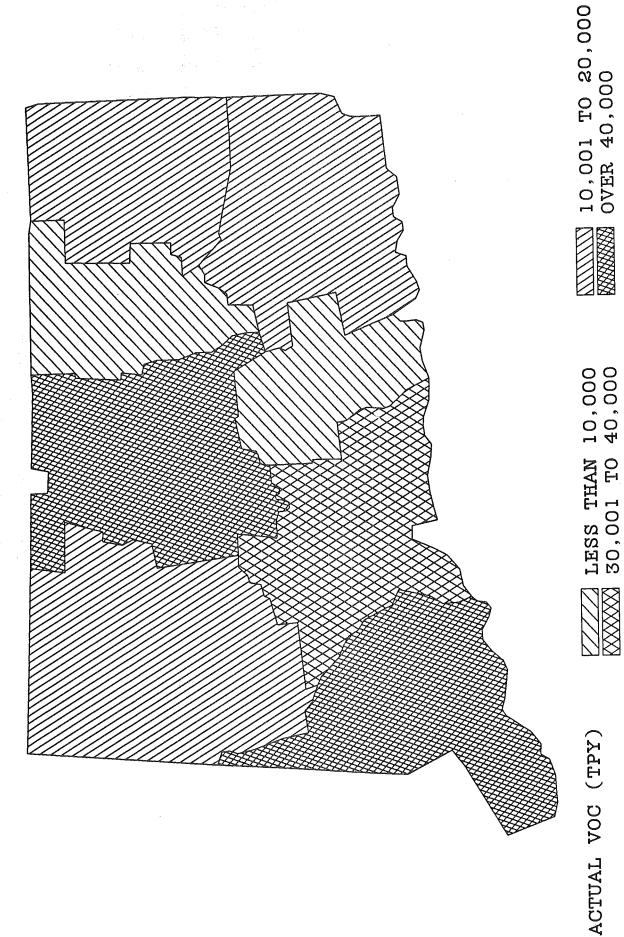
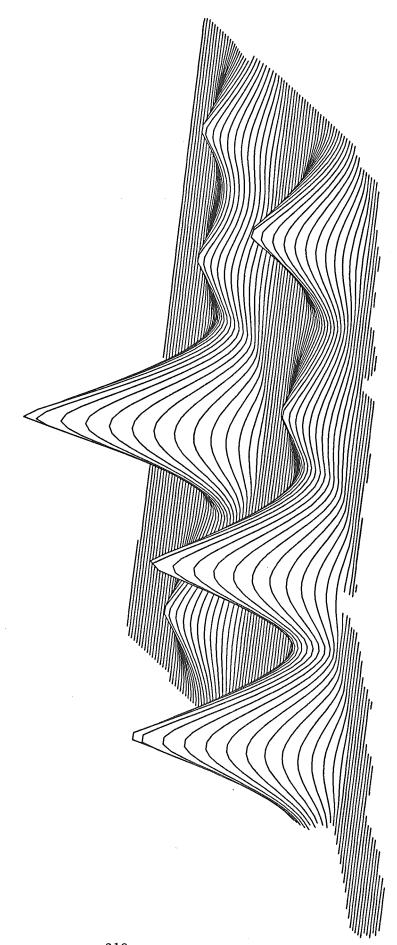
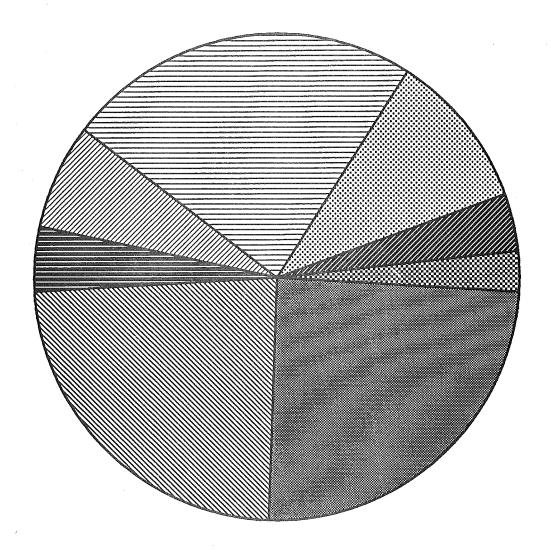



Figure 31

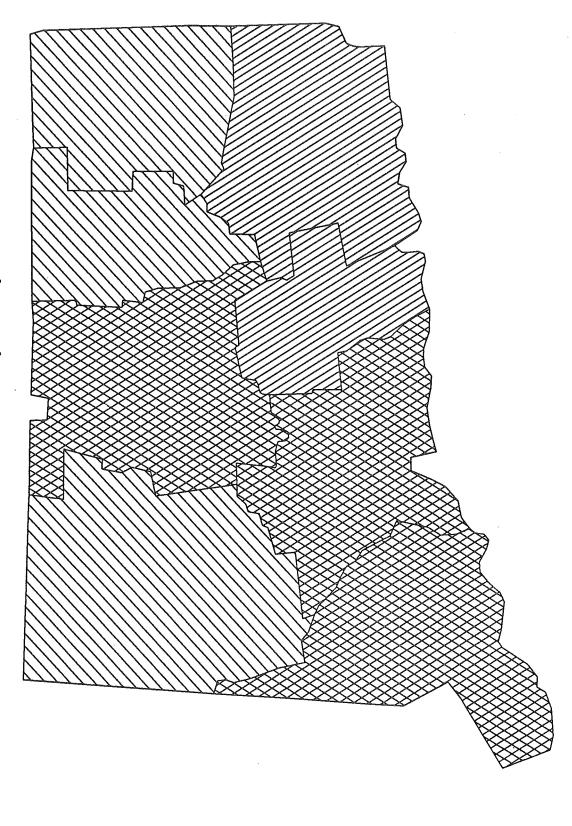
1982 VOLATILE ORGANIC COMPOUNDS Total Emissions by County

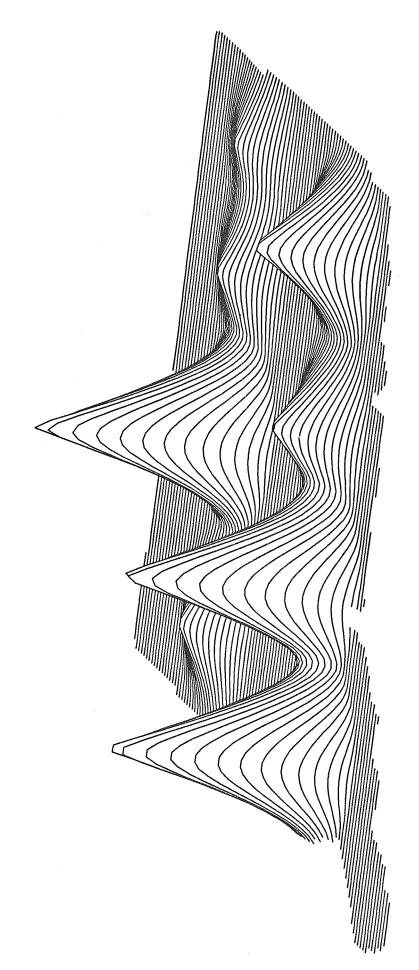


1982 CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION

EMISSIONS INVENTORY BY COUNTY

NITROGEN OXIDES, EXPRESSED AS NO2


TOTAL TONS PER YEAR - 155,429


- FAIRFIELD 24.6%
- LITCHFIELD 4.3%
- MIDDLESEX 7.0%
- NEW HAVEN 23.7%
- **™ NEW LONDON 10.4%**
- **Z** TOLLAND 3.8%
- **◯** WINDHAM 2.7%

LESS THAN 10,000 OVER 30,000

1982 NITROGEN OXIDES (Expressed as Nitrogen Dioxide) Total Emissions by County

1982 NITROGEN OXIDES (Expressed as Nitrogen Dioxide) Total Emissions by County

Three Dimensional View of NO2 Emissions

XII. PUBLICATIONS

The following is a partial listing of technical papers and study reports dealing with various aspects of Connecticut air pollutant levels and air quality data.

- 1. Bruckman, L., Asbestos: An Evaluation of Its Environmental Impact in Connecticut, internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, March 12, 1976.
- 2. Lepow, M. L., L. Bruckman, R.A. Rubino, S. Markowitz, M. Gillette and J. Kapish, "Role of Airborne Lead in Increased Body Burden of Lead in Hartford Children," Environ. Health Perspect., May, 1974, pp. 99-102.
- 3. Bruckman, L. and R.A. Rubino, "Rationale Behind a Proposed Asbestos Air Quality Standard," paper presented at the 67th Annual Meeting of the Air Pollution Control Association, Denver, Colorado, June 9-11, 1974, J. Air Pollut. Cntr. Assoc., 25: 1207-15 (1975).
- 4. Rubino, R.A., L. Bruckman and J. Magyar, "Ozone Transport," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15-20, 1975, J. Air Pollut. Cntr. Assoc.: 26, 972-5 (1976).
- 5. Bruckman, L., R.A. Rubino and T. Helfgott, "Rationale Behind a Proposed Cadmium Air Quality Standard," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15-20, 1975.
- 6. Rubino, R.A., L. Bruckman, A. Kramar, W. Keever and P. Sullivan, "Population Density and Its Relationship to Airborne Pollutant Concentrations and Lung Cancer Incidence in Connecticut," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, Massachusetts, June 15-20, 1975.
- 7. Lepow, M.L., L. Bruckman, M. Gillette, R.A. Rubino and J.Kapish, "Investigations into Sources of Lead in the Environment of Urban Children," Environ. Res., 10: 415-26 (1975).
- 8. Bruckman, L., E. Hyne and P. Norton, "A Low Volume Particulate Ambient Air Sampler," paper presented at the APCA Specialty Conference entitled "Measurement Accuracy as it Relates to Regulation Compliance," New Orleans, Louisiana, October 26-28, 1975, APCA publication SP-16, Air Pollution Control Association, Pittsburgh, Pennsylvania, 1976.

- 9. Bruckman, L. and R.A. Rubino, "High Volume Sampling Errors Incurred During Passive Sample Exposure Periods," J. Air Pollut. Cntr. Assoc., 26: 881-3 (1976).
- 10. Bruckman, L., R.A. Rubino and B. Christine, "Asbestos and Mesothelioma Incidence in Connecticut," J. Air Pollut. Cntr. Assoc., 27: 121-6 (1977).
- 11. Bruckman, L., Suspended Particulate Transport in Connecticut: An Investigation Into the Relationship Between TSP Concentrations and Wind Direction in Connecticut, internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, December 24, 1976.
- 12. Bruckman, L. and R.A. Rubino, "Monitored Asbestos Concentrations in Connecticut," paper presented at the 70th Annual Meeting of the Air Pollution Control Association, Toronto, Ontario, June 20-24, 1977.
- 13. Bruckman, L., "Suspended Particulate Transport," paper presented at the 70th Annual Meeting of the Air Pollution Control Association, Toronto, Ontario, June 20-24, 1977.
- 14. Bruckman, L., "A Study of Airborne Asbestos Fibers in Connecticut," paper presented at the "Workshop in Asbestos: Definitions and Measurement Methods" sponsored by the National Bureau of Standards/U.S. Department of Commerce, July 18-20, 1977.
- 15. Bruckman, L., "Monitored Asbestos Concentrations Indoors," paper presented at The Fourth Joint Conference of Sensing Environmental Pollutants, New Orleans, Louisiana, November 6-11, 1977.
- 16. Bruckman, L., "Suspended Particulate Transport: Investigation into the Causes of Elevated TSP Concentrations Prevalent Across Connecticut During Periods of SW Wind Flow," paper presented at the Joint Conference on Applications of Air Pollution Meteorology, Salt Lake City, Utah, November 28 December 2, 1977.
- 17. Bruckman, L., E. Hyne, W. Keever, "A Comparison of Low Volume and High Volume Particulate Sampling," internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, 1976.

- 18. "Data Validation and Monitoring Site Review," (part of the Air Quality Maintenance Planning Process), internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, June 15, 1976.
- 19. "Air Quality Data Analysis," (part of the Air Quality Maintenance Planning Process), internal report issued by the Connecticut Department of Environmental Protection, Hartford, Connecticut, August 16, 1976.
- 20. Bruckman, L., "Investigation into the Causes of Elevated SO₂ Concentrations Prevalent Across Connecticut During Periods of SW Wind Flow," paper presented at the 71st Annual Meeting of the Air Pollution Control Association, Paper #78-16.4, Houston, Texas, June 25-29, 1978.
- 21. Anderson, M.K., "Power Plant Impact on Ambient Air: Coal vs. Oil Combustion," paper presented at the 68th Annual Meeting of the Air Pollution Control Association, Paper #75-33.5, Boston, MA, June 15-20, 1975.
- 22. Anderson, M.K., G. D. Wight, "New Source Review: An Ambient Assessment Technique," paper presented at the 71st Annual Meeting of the Air Pollution Control Association, Paper #78-2.4, Houston, TX, June 25-29, 1978.
- 23. Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Pasceri, "Aerial Investigation of the Ozone Plume Phenomenon," J. Air Pollut.8 Control Association, 27: 460-3 (1977).
- 24. Wolff, G.T., P.J. Lioy, R.E. Meyers, R.T. Cederalll, G.D. Wight, R.E. Pasceri, R.S. Taylor, "Anatomy of Two Ozone Transport Episodes in the Washington, D.C., to Boston, Mass., Corridor," Environ. Sci. Technol., 11-506-10 (1977).
- 25. Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Meyers, and R.T Cederwall, "Transport of Ozone Associated With an Air Mass," In: Proceed. 70 Annual Meeting APCA, Paper 377-20.3, Toronto, Canada, June, 1977.
- 26. Wight, G.D., G.T. Wolff, P.J. Lioy, R.E. Meyers, and R.T.Cederwall, "Formation and Transport of Ozone in the Northeast Quadrant of the U.S.," In: Proceed. ASTM Sym. Air Quality and Atmos. Ozone, Boulder, Colo., Aug. 1977.

- 27. Wolff, G.T., P.J. Lioy, and G.D. Wight, "An Overview of the Current Ozone Problem in the Northeastern and Midwestern U.S.," In: Proceed. Mid-Atlantic States APCA Conf. on Hydrocarbon Control Feasibility, p. 98, New York, N.Y., April, 1977.
- 28. Wolff, G.T., P.J. Lioy, G.D. Wight, R.E. Meyers, and R.T.Cederwall, "An Investigation of Long-Range Transport of Ozone Across the Midwestern and Eastern U.S.," Atmos. Environ. 11:797 (1977).

A service of the servic

XIII. ERRATA

During the preparation of this document, a number of errors were discovered and corrected. In order to prevent any confusion in the mind of the reader over conflicting data presented in this and previous editions of this document, the errors and corrections are presented below:

Regarding 1975 TSP data, all references to the following monitoring sites should be ignored: Enfield 001, Enfield 123, Enfield 001/123, Danbury 001, Danbury 123, Danbury 001/123, Groton 001, Groton 123, Groton 001/123, Torrington 001, Torrington 123, Torrington 001/123. These sites either had insufficient data for a valid annual average concentration or they included data from two different sites.

Regarding 1976 TSP data, all references to the following monitoring sites should be ignored: Stamford 003, Stamford 123, Stamford 003/123. These sites either had insufficient data for a valid annual average concentration or they included data from two different sites.

Regarding 1980 TSP data, the following corrections have been made:

- 1. Bridgeport 001: The number of samples for the year has been changed from 57 to 58, and the annual geometric mean concentration has been changed from 47.8 to 47.6 ug/m³.
- 2. Bridgeport 123: The annual geometric mean concentration has been changed from 64.2 to 63.8 ug/m³.
- 3 Greenwich 016: All references to this site should be ignored. This site is considered to have been unsuitably located for acceptable particulate monitoring.
- 4. Morris 001: The standard deviation of the sampling data has been changed from 1.567 to 1.557.

Regarding 1981 TSP data, the following corrections have been made:

1. Bristol 001: The number of samples for the year has been changed from 55 to 58, and the annual geometric mean concentration has been changed from 34.1 to 34.6 ug/m³.

Regarding TSP data for the years 1975 through 1981, all references to sites Torrington 123 and Waterbury 123 should be ignored. These sites are now considered to have been unsuitably located for acceptable particulate monitoring.

The above corrections, where relevant, are implicit in Table 2 and Table 8. Accordingly, versions of these tables found in post-1974 editions of this document contain erroneous information and should be ignored.

Regarding Table 2, some of the earlier editions of this docuemnt have contained versions of this table which appeared to present annual "arithmetic" mean data. This is incorrect. All versions of this table contain annual "geometric" mean data.