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EXPERIMENTAL ERRORS IN
DERIVED THERMODYNAMIC CONSTANTS

C. R. Frink and P. E. Waggoner

Experimental determination of thermodynamic equilibrium constants
is a popular and powerful technique of soil chemistry. The applicability
of a particular theory is generally established by demonstrating that the
constant in the mathematical statement of the theory is invariant over a
wide range of conditions. Even when the theory applies, however, the
estimates of the constant will vary because the observations from which
they are derived are inexact. Thus, a statistical test is required to deter-
mine whether the variability in the estimates of the derived constant
exceeds the error inherent in their measurement.

The usual analysis of variance (12) would be a satisfactory test,
provided that the necessary replicate chemical determinations were made.
Unfortunately, chemists rarely provide such data, owing either to an aver-
sion towards extra work or towards statistics. However, many procedures
have been in use so long that an estimate of their precision can be taken
as the precision of the entire population of determinations by these
methods (12). Thus, we feel justified in estimating the precision of routine
chemical analyses from experience. Now we inquire how we may use
these estimates to predict the variability expected in a derived constant
from a knowledge of the variability of its several constituent measurements.

Kolthoff and Sandell (9) have summarized earlier work (1) and
discuss the errors expected in derived results. If the result, e.g. a constant,
is calculated as a sum or difference of its constituent measurements, its
variance is the sum of the variances of the individual measurements.
If the result is a product or quotient, its squared coefficient of variation
is the sum of the squared coefficients of variation of the individual measure-
ments. Similar procedures are used in separating sampling from analytical
errors (12). While these methods seem satisfactory for many purposes,
they do not indicate clearly how sums containing various coefficients are
treated, nor do they describe products with exponential terms. A more
serious defect is the neglect of cases where two or more variables are
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correlated. In this case, a correction term containing the correlation coef-
ficient must be introduced (11).

Recently, Ku (10) has treated the problem of propagation of errors
in a more systematic fashion. He utilized a theorem which relates the
variance of a function f(x.y) to the first and second partial derivatives
with respect to the arguments x and y, as well as to the variance and
covariance of x and y. For simple functions where the partial derivatives
may be written explicitly, his approach is more elegant; however, this
is not always the case in the functions we shall encounter. In some in-
stances, the partial derivatives could be evaluated graphically. In general,
however, the approach we propose below seems more suitable for the
functions likely to be encountered in chemical equilibria.

Thus, we shall apply these concepts to an evaluation of the errors
to be expected in derived thermodynamic constants and then compare
our predicted errors with those observed in experimental data. D:fferent
ways of reading this bulletin are suggested for different purposes. Logically,
THEORY and COMPUTATIONAL AIDS precede APPLICATIONS,
and this is the order that follows. Many may wish, however, first to see
the usefulness of the methods in testing the constancy of the equilibrium
constant in a specific chemical reaction, They should go to APPLICA-
TIONS first and return to THEORY and AIDS as needed.

Theory

Inasmuch as indicated products or quotients in equilibrium constants
can easily be expressed as linear functions of logarithmic terms, we need
only develop an equation for the variance of a sum of variates. Following
Weatherburn (11), we let u; be a linear function of the variates xi, yi,
z ..., with known constants a, b, ¢ . .. either positive or negative:

u, = ax, + by, +¢z, +... [1]

The expectation or limiting mean of u; is related to the other variates
thus:

E(u) = aE(x) 4 bE(y) + cE(z) + ... (2]
From [1] and [2] we obtain by subtraction:
8u, = asx, + bdy, } cdz, + ... [3]

where § indicates the deviations of the variates about their limiting means.
If we recall that the variance of any of the variates, say X, is by definition:

of = E(3x)* [4)
s
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and that the correlation coefficient between any two variates, say x and
y, is:

L E@xney)
o0, [5]

we may find the desired formula from [3] by squaring both sides and
taking expectations., The result is:

PX\‘ =

oy = a%o} + b%? + %} + 2zib,c3ty oo + 2acp o o —|—2bCpn(rya; o
Since u, in [1] corresponds to —log K or pK in the usual logarithmic
expression of equilibrium constants, the hypothesis to be tested is that u,
is constant. In other words we shall test whether the observed variance of
u, given by:

sz__

=TT 71

cxceeds the predicted variance o2 given by [6]. Since we are comparing
an observed variance with a theoretical one, a chi-square test is appropriate
for testing whether the quantity calculated by equation [7] is statistically
greater than that given by [6].

At this point, we must recognize several complications in using equa-
tion [6]. First, the variates x,, y,, z, . . . are usually not measured directly,
but will be calculated from analytical determinations of the experimental
variables R, S,, T, . ... Further, the calculated variates may be non-linear
functions of more than one experimental variable, so we define:

X = f(Rl’ Sn Tl) [8]
Yi= g(Ru Si! Tl) [9]
z, =hR,,S,, T) [10]

Thus, an experiment consists of measuring R,, S;, T, ... during some
systematic manipulation of the experimental conditions, and then calculat-
ing u, from equations [1] and [8] to [10]. More specifically, u, would be
a pK,, while x, might be the concentration of Al+? ions calculated from
R,, a pH measurement, and S, a measurement of total aluminum (6, 7).

Since we want to calculate the predicted variance from [6], we must
be prepared to cope with the non-linearity of [8] to [10]. The con-
sequence of this non-linearity, of course, is that the mean of x,, for
example, is not equivalent to f (R, S, T). Furthermore, even though the
experimental errors, which we will define as 3R, 8S,, 3T, ..., may be
independent with zero expected means, the errors 3x, 8y, 8z, ... are
neither independent nor have zero expectations,
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To examine the magnitude of the errors introduced by these assump-
tions, we may express |8] as:

x, = f(R + 8R,, S + 8S,, T + oT) [11)

Here we have chosen to use sample estimates, rather than population
parameters, i.e. R rather than E(R), since we have defined R, S,, T, ...
as the experimental observations. Expansion of the right-hand member of
[11] by means of Taylor’s series (cf. (2) for a similar treatment of sampling
errors) leads to:

x, = f(R, S, T) + 8R,f(x,) + #3R? £/ (x,) + ...
+ 88, £5(x,) + 88 5 (x,) + ...
+ 8T f1.(x,) + T2 £7(x)) + ... [12]
We may obtain the expectation of [12] by summing over all values of i
and dividing by N. It is evident that if the function is linear, the expecta-
tion of x, is indeed f(R, S, T). Furthermore, if the errors of observation
8R,, 85, 8T, ... are small, or the departure from linearity is not great,
we may approximate the expectation of x, as f(R, S, T). Similar considera-
tions hold for [9] and [10]. In practice, we shall usually find that both of
these criteria are met; if not, a graphical evaluation of [12] is probably
the easiest approach.

The second complication in using equation [6] concerns the nature
of the population from which our observations of uy, us . ..u, are drawn.
Equation [6], as derived, is applicable to repeated observations of
R;, S, T, ... and the subsequent calculation of u, from x,, y,, z, . . . for
samples drawn from the same population. We wish to enquire, however,
whether u, is constant when the experimental conditions R, S,, T, ...
are varied in a deliberate fashion as by dilution or acidification. Thus, we
have created several populations of samples, and consequently the means
R, S, T ... have little meaning since the bulk of the variation is non-
ranqom. In addition, since these samples are drawn from different pop-
ft;l:;llons, we: c;lann:lt assume homogeneity of variance; in fact, we find

numerical calculati i
Aa va?ues e T?ITS, .t}'lat the variance of x, y,, z, ... depends
ot Qb“":ﬁ}% we need to compare values of u, from different popula-

ons In order to provide a discriminating test of the constancy of pK
over var).m:f O;ondmons. Thu§, we must cope with the heterogeneous
variance in uced. One solution is to calculate from [6] the estimated

2 f .
oy for each uy, vz ... u, determined. The i i
, ! ; n, these estimates of the variance
may be weighted in the computation of chi-square as follows:

= _;M
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where it is understood that the variance o2 is taken at each value of i.
We assume that this statistic is distributed approximately as chi-square
with n — 1 degrees of freedom.

Finally, we must recognize one further complication in the use of
equation [6], which requires that we distinguish carefully between errors
of measurement which are correlated and those which are not. Normally,
in chemical equilibria, a change in the concentration of one chemical
species produces changes in the concentration of all other species; con-
sequently, all the variates are correlated. Clearly, this is the case when
replicate samples are prepared: an error in one variate will produce cor-
responding errors in the other variates. As a simple example, consider the
preparation of three replicate solutions of KCl, either by weighing three
portions of salt or by dilution of three aliquots of a standardized stock
solution. In either case, the analyst is not likely to measure the resulting
concentrations, but will calculate them from the known weight or dilution
factors. Since errors in weighing or dilution are inevitable, he has thus
introduced an error which we will call the sample error. If we now require
the concentration of K* plus Cl- ions in the solution, the variance of the
sum will be given by equation [6]. Obviously, in this case, since the cor-
relation coefficient between the calculated concentrations of the two ions
is positive and equal to unity, and their individual variances are the same,
the variance of the sum is four times the variance of the original error
made in preparing the sample. At this point, it is well to note that this use
of the term sampling error is quite specific and does not coincide with the
usual usage: we are not concerned here with the ability of the analyst
to obtain replicate sub-samples of a bulk shipment of muriate of potash
in order to determine its KCI content.

Continuing with this example, suppose now that we wish to measure
the K* and Cl- concentrations in three replicate solutions. Since we
cannot measure these variates precisely, we introduce additional uncer-
tainties. However, unless one variate is calculated from measurements of
another, as implied in [8] to [10], the uncertainties of observation are
not correlated. For example, we might determine K* by flame photometry
and CI- by titration with AgNOs;. Then the variance of the sum of the
two observations would be merely the sum of the variances of the two
independent analytical methods. Notice, however, that if we determined
only the CI- content, and calculated the K* content by equating the two,
the errors of observation would be correlated and the variance would
increase accordingly.

Thus our definition of the deviations 8R, 8S,, 8T, . . . and the cor-
responding 8x,, 3y,, 8z, . . . which specifies that they are measured about the
observed means includes both of these error terms. We may redefine
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x, = E(x) + 8x,, + 8x,, or R, j—:ﬁ + 8R,, + 3R, where s indicates the small, the required calculations of means and standard deviations may be
sample error and o the observational error, If we assume that there is no made before or after inter-conversion from arithmetic to logarithmic units.
correlation between these two sources of error, the expected variance can Let w, be a measurement that has not been converted to logarithms
be derived in the same fashion as equation [6]. The result for two variates and e, be its relative error, 1—w, /w. Then we require the relationship
is: between log w and log w, and between s3,, , and s; Again, we prefer the

2 + o = '}, + @'}, + bl + b%e? ) notation for sample estimates, rather than population parameters E(log

+ 2abpo o + 2abpo o [14] w) and log E(w). Use will be made of the series:
B SX 8Y 0 0X 0y |
3

This equation is of course identical to [6] and merely indicates that the two 4 log(k + e) = MIn(k + e) _M{In k42 [2ke + —;(2; ) + .. ]}
variances are additive. Note that the additivity of the two components of 16 e
variance is only true for single observations on single samples. Since [15]

replicate observations will reduce o} but not of, while replicate samples Since:

will reduce the variance from both components (3), the variance of the
mean of n observations of k samples is (o?/n + o2)/k. It appears simpler
to retain our original definitions of 8R;, 8S,, 8T, ... to include all devia- [16]
tions about the means and simply choose the proper correlation coef-
ficients. Thus, we need to distinguish carefully between the variance
expected for replicate observations of a single sample, or single observa-
tions of replicate samples. The variance expected for replicate observations
may be estimated from our chemical experience (12). We may also
estimate the errors in preparation of replicate samples from our knowledge
of the errors of common laboratory operations. If other types of replica-
tion are involved, as in the determination of solubility products in replicate
soil extracts, the greater variability inherent in soil samples could be
estimated. log(1 +e) 2M Z[ Bt _,_i( i )“ + ] (18]
In summary, we have derived the necessary equation for the variance n o 24+¢ " 3I\2+4e¢ o

of a sum of variates and have explored the complications in its use:
first, the calculated variates must be nearly linear functions of the experi-
mental variables which in turn are measured with small error; second,
the non-homogeneous variance from one population to another must be
compensated for by the proposed weighted chi-square; and third, sampling
and observational errors must be clearly distinguished.

Slogw, Zlog(w,/W)(W) Lus e A w,
logw = == = _logw—l-—ll—ilog?

we see that the last term in the right-hand member of [16] is the dif-
ference between the mean of the logarithms and the logarithm of the
means. The error introduced by this term is evaluated by equation [15].
Since w, = W -+ e,W :

w, w -+ ew
log$:log—w_—:log(1 +€,) [17]

If we expand [17] with [15] and realize k = 1, we see:

In laboratory analyses of the sort considered here, a relative error e, of
0.1 would be extremely large. Therefore, the goodness of approximation
is conservatively evaluated by assuming half the e, are—0.1 and half
are 0.1. When ¢, is 0.1, the cubic term in [18] is negligible and can be
omitted, and: :

R 16 W—ZM _rl(—().l 1(0.1
g g _T[Z = T 2_.1-)]_—0'002 [19]

Computational Aids
Before turning to the experimental examples, we must consider sev- Thus, we conclude that the mean of the logarithms is for all practical pur-
eral computational aids. Data frequently are collected in both arithmetic poses equal to the logarithm of the means.
and logarithmic units and confusion often arises over their inter-conver- Now we consider the relationship between s;_ ands.
sion. Furthermore, since many analytical errors are proportional to the
amount taken for analysis, statistical practice (3, 12) calls for a transfor-
mation to logarithmic units to provide homogeneity of variance. We shall @—1)s? = 3(log w,—logW)* = Z[log(l—e,)|* =

w

show that for all practical purposes, when the errors of observation are Mz23[In(1 + €))]? (20]

Employing [17]:
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Expanding [20] by means of [15]:

(@—Dst =2M:Y [(2%—2—;) 4 ‘;(%e_t)‘ + %(2—%7‘)“ b ]
[21]

Again, if the extreme case that half the e, are —0.1 and half 0.1 is as-
sumed, only the first term within the brackets of [21] need be retained.
For this case, we shall demonstrate that s} is approximately M’s by
dividing

(n—DM®s; = M*3(e,—¢€)* = M*3e} [22]
into [21]. The quotient is:

S/ M52 = 2 2 (2 Te )/Zef

S, /M8t = 2"[ ( ) (ﬁ) M{O.l )* = 1.008
(23]

Thus, for relative errors of 0.1 or less and for all practical purposes, s}
equals M?s2. In addition, it is readily shown that s? is the square of the
coefficient of variation, namely s? = s;/”w_”. Thus, we can convert between
linear and logarithmic data as necessary.

For computational purposes, it is frequently convenient to have an
expression for the variance of a product or ratio without the necessity for
conversion to logarithms. Using our previous approximation s’-Iog L=

Ms? /ﬁrf, we may derive the variance of u = xy. Since the variance of
log u is:

sz}“b u = bIﬂR X + STQH ¥ + 2rs]l)l.' x 3108 ¥ £24I
we readily obtain:
-S;fi = 5‘- i-::— - ESLSY
To R R [25]

Since, according to [12], 1 is approximately equal to Xy for small variations
in x and y:

Sh= @) + (@2 + 2 xys s, [26]

By a similar process, we.obtain the variance of u = x/y:

s s =g

"y Xy (27]

Thus, within the limits of the indicated approximations, and if no correla-

tion exists, [25] and [27] reduce to the sum of the squared coefficients
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of variation as previously noted. The same expressions for the variance
of a sum or product were obtained by Ku (10) using propagation of error
formulas. He also presents a more detailed discussion of the necessary
assumptions and approximations. With these computational aids, we now
consider some numerical examples.

Applications

Example One

Predicted variance, First, we examine the errors inherent in the deter-
mination of the first stage hydrolysis constant of aluminum (7). The
chemical reaction involved is:

Al*3 4+ H,O = AIOH*2 4 H+ (28]

Thus, the negative logarithm of the equilibrium constant, pK,, is defined
according to the theory under test:

pK; = pAIOH *2 4 pH*+ — pAl+3 [29]

where the symbol p denotes the negative logarithm of the individual ion
activities (the activity of water is assumed to be unity). Since most
chemical methods measure concentrations, not activities, we immediately
find ourselves faced with the situation anticipated in equations [8] to [10].
First, we recall that ion activities are defined by:

—pH = log (H) = log y + log [H] [30]

where parenthesis indicate activities, brackcts indicate concentrations, and
y is the appropriate activity coefficient. Although activity coefficients are
a complex function of the concentration of all ions in solution (i.e. the
ionic strength), at any given concentration they are constant, and more-
over, we shall assume they are known without error. This latter assump-
tion can never be proved wrong, since single ion activity coefficients can
never be measured, but are calculated from one of a number of theories.
In any event, different theories are in reasonably good agreement for
dilute solutions, so we shall proceed.
With these definitions in mind, we can rewrite [29] as:

¥ i/
pK, = —log[AIOH| — log[H] +- log[Al] — log ~3%= (31]
Al
where the chemical valences have been. omitted for simplicity. For the
calculation of pK,, the analytical dete_rmmation of pH (note that the glass
electrode determines activity) is required. The total amount of aluminum
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present, [Al,], could be determined analytically, but in this case (7) it was
calculated from the serial dilution of a carefully standardized stock
solution. Since one [H*|] is produced for each [AIOH*2|, we equate
their concentrations. The concentration of [Al*?] is then equal to [Al,—
H+*|. Thus we may write [31] as:

Y Y
pK; = —2log[H]| + log| Al; — H| — log Alf;}l H i

Al

Now we may use equation [6] to calculate the variance expected,
ol » if replicate determinations were made on solution No. 1 shown in
Table 1 (7). First, we must evaluate the expected observational variance
of the term log|Al,—H|. While this term could be expanded with Taylor’s
series as in | 12|, it is simpler to use [6] for the variance of [Al,—H]|,
and then convert to logarithms using the approximation o = Mag,.
A graphical evaluation of the data (Table 1) indicates that [Al,—H]| is a
nearly linear function of |Al;| over the whole range of concentrations
studied, and is nearly linear in |H| for small deviations about a particular
observation. Thus, little error is introduced by our implicit assumption
that the expectation or mean of [Al*#] is the expectation of |Al,—H|
either for replicate observations or for replicate samples.

Since the concentration of aluminum was not determined analy-
tically but was calculated from dilution, the errors of observation of [Al]
are obtained from an estimate of dilution errors. If we assume the errors
(o) of dilution to be one per cent, the variance of [Al,] in solution No. 1
is (0.01 x 1.00 x 102)2 or (1 x 10%)*. We estimate the standard devia-
tion (0., ) of a pH measurement or of —log[H] to be 0.02 pH units
(7) or 0. = 4.61 per cent. Since —log[H| is 3.63 or [H] = 2.34 x 107,
the variance of [H] is (0.0461 % 2.34 % 10%)? or (1.08 % 10)2, In addi-
tion, we require the correlation coefficient between [Al;] and |H| for
replicate observations on a single sample. Although [Al,| and |H| appear
(Table 1) to be positively correlated, the correlation between the errors of
observation 8[Al| and 8[H| is zero as previously discussed. Thus, the
variance of [Al,—H]| is merely the sum or (1.00 % 10*)%. Since [Al,—
H] = 97.7 %X 10, the standard error (o) is 1.03 per cent or the expected
observational variance, osy of log|Al—H| is (0.0045).

Having determined the observational variance, we now inquire what
the expected variance of log|Al,—H| would be for the preparation of
replicate samples. Again, we assume the error of dilution in preparing
[Al] is one per cent. From a graphical evaluation of the data in Table 1,
we find that this will produce a 0.60 per cent error in [H|. From the
chemistry of equation [28| or from the experimental data it is evident
that an increase in |Al,| is accompanied by an increase in [H|. Thus,
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the correlation is positive, and, for small deviations about the mean is
nearly perfect; accordingly we assume p = 1.0. Then the sampling variance
predicted for [Al,—H] is:

af = (1)* (0.01 X 1.00 x 10*)? 4 (1) (0.006 X 2.34 X 10 +
(2) (1) (-1) (1.0) (0.01 X 1.00 X 107%) (0.006 X 2.34 X 10™) =
(9.86 x 10°%)* [33]

or the variance of log[Al;—H] is (0.0044)*. Owing to the correlation
between the variates, the effect is to reduce the predicted variance. Indeed,
we should anticipate this from [6], which for only two variates would be:

oy = a'e} + b*e} + 2abpo, g [34]

Clearly, if a* equals b* and the errors of x and y are equal, the predicted
variance is zero if the errors are perfectly correlated and 2abp has a nega-
tive sign. The negative sign, of course, arises in one of two ways: either
the sum of two negatively correlated variates or the difference between
two positively correlated variates is calculated. As previously indicated,
this situation is usually encountéred in the determination of thermodymanic
equilibrium constants, and decreases the expected variance from one
sample to another.

Since we require the expected variance for analyses of replicate sam-
ples, the variance of log| Al,—H| is clearly the sum of the observational
and sampling errors, or (0.0063)?. However, the present experiment was
based on single analyses of three replicate solutions for each pK, deter-
mined, with the mean pK values reported. This condition, or the reverse,
namely replicate analyses of single samples with only the means reported,
is fairly common in chemical data. Thus we inquire how the sampling and
observational errors are to be combined. Since replicate observations
will reduce o2 but not ¢?, while replicate samples will reduce the variance
from both components, the variance of the mean of n observations of k
samples is (¢2/n + o?)/k as previously stated. Thus, the variance of
log[Al;—H] for three replicate samples is [(0.0045)* + (0.0044)?]/3 or
(0.0036)*. Before continuing with the calculation of the variance of pK,
we will calculate the observational and sampling variance expected for the
remainder of the experimental observations (Table 1). Since we will later
require the individual estimates of each component of the variance, they
have not been summed in the tabulated data, Initially, the variance of
log[Al;—H| is dominated by the variance of [Al,], since [Al] >>[H].
Then, as [H| approaches |Al], the variance increases considerably,
reflecting the much greater uncertainty in the measurement of [H].

Now we have estimates of the variance of all three terms in [32],
having assumed that the variance of the activity coefficient term is zero.
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Note that if these uncertainties were known, they could be included at this
point, In order to determine the predicted variance of pK, for analyses of
replicate samples, we need to consider again the difference between obser-
vational and sample preparation errors. In the case of errors of observa-
tion, it is clear that log[H| and log[Al;—H] are correlated, since
[Al,—H] is calculated from the observed [H|. Further, an increase in
[H| causes a decrease in [Al¢—H], so the correlation is negative and we
estimate p = —1.0. Using our estimate of the observational variance of
log[Al,—H] = (0.004)?, we find the observational variance of pK, for
sample No. 1 is:

o2 = (—2)* (0.02)? + (1)* (0.004)* + (2) (—2) (1) (—1.0) (0.02) (0.004)
— (0.044)? [35]

We now inquire what the sample preparation variance would be. Again
we assume a one per cent error in [Al:], which will produce an error of
0.60 per cent in [H| and a 1.01 per cent error in [Al;—H]. On conver-
sion to logarithms, and realizing that the correlation between log[H] and
log|Al,— H]| for replicate samples is still negative, since one is calculated
from the other, we may write the sampling variance as:

o? = (—2)? (0.003)? + (1)? (0.004)* + (2) (—2) (—1.0) (0.003) (0.004)
— (0.010)* (36]

Thus the total expected variance is merely the sum of the two, or (0.045)2

We may also obtain this directly, by using the sum of the sampling
and observational variance expected for log[Al,—H] and log[H]. We
have already shown that the expected variance for log|Al,—H] is
(0.006)*, while for log[H] it is (0.02)2 + (0.003)* or (0.020)2. Now we
see the utility of retaining our original definition of the 8x,, dy,, 8z, ...
to irlclu.de all deviations about the means. This allows us to determine the
correlation coefficient between |H] and [Al,—H]| no matter what the

cause: the coefficient is always negative since one is calculated from the
other. Thus we may write:

oo = (—2)%(0.02)* + (1)? (0.006)* + (2) (—2) (1) (—1.0) (0.02) (0.006)
— (0.046)? [37]

We have Bie through this example in considerable detail, since some
of the calcu!auons and assumptions are not at all obvious. The remainder
of the predicted values for o2, were calculated according to [35] and
[36] and compared with [37]. In all cases the agreement was excellent.

In the present case we require the variance of the mean pK for single
observations of three replicate samples; thus, the predicted variance for
sample No. 1 should be [(0.044)* - (0.010)*]/3 or (0.026)%. Since we

R R R s
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have already calculated the sampling and observational terms for the
variance of log|Al, —H|, we may use their sum or (0.006)* in [37]
and divide by 3; the result is (0.026)?. Since the difference between these
two methods is quite small for the first few solutions in Table 1, the
expected variance for the mean pK was calculated in both ways. Again
the agreement was good and the estimates for the variance of the mean pK
are shown in Table 1. Clearly, we were correct in anticipating non-homo-
geneity of variance; the predicted values depend on the magnitude of and
the correlations between the variates calculated from the experimental
observations, as well as on the errors of sampling and observation.

Now we may use our weighting scheme, equation [13], to compare
the predicted with the observed variance. We estimate chi-square as
follows:

2
o
pPKE

: @—Dsjx [M]
% >; o (38]

The result, 64.2, should be distributed as chi-square with n—1 or 7
degrees of freedom. Since the probability is less than one per cent that this
value would be obtained in random sampling, we reject the hypothesis
that pK, is constant over the range of experimental conditions. Closer
examination of the data in Table 1, however, indicates that the value for
pK, for the most dilute solution (No. 8) is suspiciously low: the mean
pK for these 8 observations is 4.970 with a standard deviation calculated
in the usual fashion of 0.135. We recall that in this particular case, three
replicate samples were prepared for each pK,, so that a t-test applied to
the original data would indicate whether this mean pK should be rejected.
An analysis of the original unpublished data indicates that indeed this is
the case. However, we wish to proceed with an analysis of the data as
presented, which usually will not involve sufficient replications for the
usual statistical tests. Bliss (3) describes a simple test for rejecting
outliers; the ratio of the range to the standard deviation is calculated and
then compared with expected values (3) for sampling from a normal pop-
ulation. In this case, the ratio is 0.44/0.135 or 3.26. The probability of
obtaining this large a ratio is only 0.10 and strengthens our suspicion that
this sample should not be included; indeed, cogent chemical reasons have
been advanced (7) for rejecting this sample. Chi-square computed accord-
ing to [38] for the remaining 7 samples is 13.9, which is slightly greater
than the expected value for p = 0.05. Thus, we tentatively accept the
hypothesis that the remaining 7 samples with mean pK = 5.02 and standard
deviation 0.041 are drawn from the same population; i.e. pK, is a constant.

Since our predicted variances, ‘T:x , seem reasonably homogeneous,
we inquire whether a pooled variance would be acceptable in the calcula-
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tion of chi-square. Bartlett’s test or a maximum variance ratio test (3)
does not provide an unequivocal answer, since we have assumed o
to represent the population variance with infinite degrees of freedom.
However, the maximum variance ratio is (0.031)?/(0.026)* = 1.42, which
is not significant (3) unless the degrees of freedom allowed exceed 60 and
approach infinity. For practical purposes, it is useful to have a pooled
variance, and we shall assume for this reason that the variance is in fact
homogeneous. The pooled variance for the 7 observations is then
1/n Yok = (0.0276)%, and chi-square computed in the usual manner
is 13.3. Thus, our weighting scheme has not altered chi-square materially.
However, had the predicted variance been less homogeneous, as for all
8 samples, similar calculations yield a chi-square of 117 compared with
64.2 from equation [38].

We conclude, therefore, that the constant in the mathematical state-
ment of the theory is in fact observed to be constant. Conversely, if the
chemical theory, equation [28], is accepted, the near equality of the
observed variance of pK, with that predicted from equation [37] estab-
lishes the validity of our estimation procedure.

Observed variance. Further verification is provided by an analysis of
variance of the original data whose means were used for the calculations
in Table 1. Three observations were made on each of 3 solutions (No. 6)
diluted to 1 ¢ 10* M in [Al;|. The calculated pK, values and the analysis
of variance are shown in Table 2. Since the replicate observations 1, 2
and 3 on sample A do not necessarily correspond to the same observations
on sample B or C, only a one-way classification is presented. The mean
square for error is then an estimate of the observational variance, o7 , for
repeated observations on the same sample. From Table 2, this is (0.048)2,
which is remarkably close to the predicted @ of (0.049)* from [35] for
solution No. 6 as shown in Table 1. Similarly, the mean square for samples
is an estimate (3) of ¢ + 307 ; solving for the sampling variance, of , we
obtain (0.012)* which compares very favorably with the value (0.011)
from [36] fpr solution No. 6 (Table 1).

A similar analysis of variance was made of the original observations
of thl:ee replicate samples for each pK, whose means are shown in Table 1.
Solution No. 8 was omitted as already discussed and solution No. 3 was
omitted because of incomplete replication. The results are shown in
Table ?, where treatments indicate different solutions, i.e. different con-
centrations of [Al]. Differences among treatments were not significant,
substantiating our previous conclusion that pK, is a constant. Differences
among sample means were not significant either, but the magnitude of the
sample mean square suggests rather large sampling errors. In this case,
the sample mean square is an estimate of ¢? + o2 + 6¢* and the error
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mean square is an estimate of o¢ o? , where ¢? is an interaction term.
Thus, we find ¢ = (0.031)? which is considerably larger than predicted
or observed in the data of Table 2. The error mean square corresponds
to (0.052)% therefore our best estimate of the population variance is
(0.031)* + (0.052)* or (0.060)2. This may be compared with the sum of
the predicted sampling and observational errors from Table 1, which when
pooled are (0.010)* + (0.047)* or (0.048)%. A chi-square test is appro-
priate for comparing our prediction with the observed variance; thus chi-
square is 12(0.060)*/(0.048)* = 18.8 which is not significant (p > 0.05).
Again, however, it is evident that our prediction is somewhat conservative.
In fact, if our predicted variance (0.048)* is used to test the significance
of the treatment mean square, chi-square is 5(0.078)?/(0.048)* or 13.2,
which is greater than the value of 11.1 for p = 0.05. Thus, we might
reject the hypothesis that pK,; is constant, when in fact the analysis ot
variance shows it to be constant within our ability to dilute and measure
pH on that particular occasion. Of course, it is evident that a chi-square
test is considerably more conservative than an F test, since infinite degrees
of freedom are assumed for the variance of the denominator in a chi-square
test.

If we look for an explanation for our conservative estimate of the
sampling variance of pK,, it is possibly our estimate of the errors of
dilution; however, it is doubtful if a careful analyst would make an error
as large as one per cent. Another possibility is some systematic error, such
as failing to properly calibrate the pH meter or using dirty glassware.
Again this implies an unusually sloppy analyst. More likely, the observed
sampling variability is due to some failure of the theory. Ion activity
coefficients might have been calculated improperly, but this should only
affect the treatment mean square. Frink and Peech (7) found that these
solutions were supersaturated with respect to gibbsite, and that AI(OH);
sometimes precipitated. This precipitation would be different from sample
to sample, and thus we suspect a chemical rather than statistical failure.
However, it is apparent that in an important experiment, it may be worth-
while for the investigator to obtain accurate estimates of his precision,
even though he still may not wish to replicate the entire experiment. In
any event, we conclude that our estimation procedure produces valid
results when the experimental uncertainties are known,

Finally, we should point out that the statistical test previously applied
(7) to this data is incorrect. First, an error was made in the coefficient of
the variance of —2 log|H|; it is of course 2%(0.02)* rather than 2(0.02)* as
stated. Second, the correlation between the variables was neglected.
However, the present examination of the data leads to the same conclusions
as Frink and Peech (7).
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Other methods. An alternative method for determining whether the
experimental data fit the theoretical model is suggested by Draper and
Smith (5) in an analysis of the distinction between “lack of fit” and “pure
error”. Again, such an analysis is only possible when replicate observa-
tions are available. Moreover, since it involves regression analysis, we
must specify the experimental variable which might be expected to cause
changes in the observed constant. However, it is instructive to apply their
methods to the present data.

It is common in thermodynamics to assume that apparent changes
in equilibrium constants in aqueous solutions are due to changes in ion
activity coefficients. Specifically, since the logarithm of the activity coeffi-
cient is a function of the square root of the ionic strength, it is customary
to plot the observed constant against the square root of the ionic strength
and extrapolate to zero, i.e. to an ideal solution at infinite dilution. Thus,
we shall test by linear regression analysis whether pK; is a function
of the square root of the ionic strength of the various solutions. These
solutions correspond, of course, to treatments in the previous analysis of
variance.

The regression analysis follows its usual form, with the results shown
in the bottom half of Table 3. Having demonstrated that the linear regres-
sion is not significant, we can use the methods of Draper and Smith (5)
to partition the residual mean square into lack of fit and pure error terms.
Now, since there was no significant lack of fit to the linear model, we have
the remaining pure error mean square which is an estimate of the pop-
ulation variance. Comparing this term with the pooled error term from
the analysis of variance in the top half of Table 3, we find they are
identical and correspond to a population variance of (0.061)%. Moreover,
the treatment mean square from the analysis of variance corresponds to
the pooled regression and lack of fit mean squares from the regression
analysis, Thus, this analysis also shows that pK, is not dependent on
treatment as measured by ionic strength and provides us with an estimate
of the population variance,

Example Two

C(.mtir"luing with other examples, we evaluate errors inherent in the
determination of solubility products. For gibbsite, the crystalline form of
Al(OH);, we write (6):

PK_ = pAl+3 4 3pOH- 139]
Separating activity coefficients, we may express the terms in [39] as func-
tions of the measured variates:

pK‘D: —log[Alt] -+ log[1 4 K /H| + 3 log[H]—3 logK _ + log f(y)
[40]
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where K is the first stage hydrolysis constant, K is the ionization con-
stant of water, and f(+) contains the activity corrections. Again, we assume
that these constants are known without error, and that the variance of
—log[H] is (0.02)%. Since in this case |Al;| is determined analytically, the
errors are of the usual sort: we estimate the variance of —log[Al| from
six analytical determinations as (0.015)?. The variance for replicate obser-
vations of [l 4 K,/H| was evaluated for each value of [H] by first
evaluating the variance of |K,/H| using either [27] or a log conversion
to permit the use of [6]. Then, the variance of log[l + K;/H| was
evaluated in a manner similar to that previously described for
log[Al;—H], with no correlation between variates (Table 4). Since
[l 4+ K,;/H] is non-linear, we should inquire if errors are introduced by
these methods. Again, we find (Table 4) that for small deviations about
the mean, the departure from linearity is not serious.

Finally, we require the correlation coefficients between the variates in
[40] for replicate observations. In this case, only [H| and [l 4 K,/H]
are correlated, and the coefficient is obviously close to —1.0 for small
deviations about the means. Thus, the variance of pK_ expected for the
first sample in Table 4 is:

asz = (—1)? (0.015)* 4 (1) (0.001)* + (3)* (0.02)*
-+ (2) (1) (3) (—1.0) (0.001) (0.02) = (0.061)* [41]

If we inquire what the error in analyzing replicate samples would be,
we find we have no basis for prediction in this experiment. Most deter-
minations of solubility products are based on the preparation of solutions
containing the necessary constituent ions (in this case Al** and OH) at
concentrations slightly greater and less than the equilibrium concentrations.
The solutions are then seeded with the crystalline solid, and equilibrium
approached from the resulting supersaturated and undersaturated solu-
tions. In this sense, preparation of replicate samples is impossible: the
original solutions may be the same, but each approaches equilibrium
independently and the final observed concentrations reflect not only the
errors in preparation of the solution, but also inherent differences in ap-
parent equilibrium concentrations. It appears, then, that this could only be
measured by experiment. In any event, our previous analysis shows that
errors of sample preparation are much smaller than errors of observation.
Since the present experiment is based on observations of single samples,
the remainder of the estimates of o}, were calculated from [41] and are
shown in Table 4. Note that o, decreases as [Al,] approaches |H],
reflecting the decreased variance as the correlation term becomes more
important,

Chi-square was computed as before. The result is 158; obviously
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these samples are not drawn from the same population, and we reject the
hypothesis that pK_ is a constant. Chemical evidence (6) suggests that
equilibrium was probably not established in these experiments. A recent
examination by Kittrick (8) of solutions equilibrated for four years was
much more likely to fit [39]: from five determinations he obtained a mean
pK,, of 34.03 with standard deviation 0.066, compared with the value
33.57 with s — 0.282 from Frink and Peech (6). Inasmuch as the cal-
culated variance (Table 4) is reasonably homogeneous, we will use a pooled
variance of (0.059)? to test Kittrick's data. In this case, chi-square cal-
culated in the usual fashion is (4) (0.066)2/(0.059)% or 5.00 which is not
significant (probability > 0.20). Clearly, Kittrick’s data indicate that pK_ |
for gibbsite is constant when adequate equilibration occurs. In addition,
we have increased confidence that our test agrees with deductions from
chemical evidence regarding the constancy of equilibrium constants.

Example Three

Finally, we test an extreme case where large exponents are en-
countered as in the solubility product of hydroxyapatite. Following Clark
(4), we write:

pK,, = 10pCa** + 6pPO;* 4 2pOH- [42]

Again, we wish to express this equation in terms of the experimental
variables. The concentration of [PO,] is given by the following approxima-
tion in the pH range 5 to 9 studied by Clark:

[P:] KoK
[H* + K.H] [43]
where K, and Kj are the appropriate ionization constants of phosphoric
acid. Thus we may express [42] as:
PK = —101log[Ca] — 6 log[P.] + 6 log[H"* ++ K,H**|
—6log[KoKs| — 2 log K + log f() [44]

[PO;] =

Here, we have a complex function in [H] to evaluate, which can most
easily be done by our now familiar scheme of finding the variance of
[H*7* 4 KoH*/*] first and then converting to logarithms, realizing of course
that [H]|* and K:[H]** are correlated for replicate observations. The
calculations are tedious and will not be presented here; the variance of
log[H"* 4 K,H**| for the data in Clark’s Table 1 decreased from
(0.047)* for the most acid solution (No. 1) to (0.027)? for the most alkaline
solution (No. 27). We assume the variance of the log[Ca] and log[P¢]
determinations to be (0.015)?, the same precision with which we measured
[Al:]. Again, we require the expected variance for replicate observations
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on a single sample, and in this case the variates are not correlated. The
predicted variance of pK is then merely the sum, or:
ap

o .= (—10)* (0.015) 4 (—6)* (0.015)* + (6)* (0.047)* = (0.332I);5]

The remainder of the values for ;rf’K were calculated according to [45].

Chi-square was then computed and found to be 143 which is highly

significant (p<0.01). Since Clark obtained a mean pK,, of 115.40 with
standard deviation 0.707, we could anticipate this result since the predicted
standard deviation, equation [45], is much smaller and decreases from
0.332 for solution No. 1 to 0.238 for solution No. 27. Thus, we must
conclude that these observations of PK,, were not drawn from the same
population, or in other words pK,, is not constant over the range of
experimental conditions. We might inquire whether we have estimated the
experimental uncertainties properly, a question of considerable significance
where large exponents are involved. This is possible, but our examina-
tion of Kittrick’s data leads us to believe that our estimates of precision
can be attained in practice.

Conclusions

The applicability of a thermodynamic theory is tested by observing
whether the constant in the mathematical expression of the theory is in
fact constant. Since the observations from which the constant are calculated
are necessarily inaccurate, a chi-square test compares the ratio of the
variance of the constant to the variance estimated from the con-
stituent observations.

Thermodynamic equilibrium constants are usually expressed as linear
functions of logarithmic terms, calculated from experimental data over a
wide range of conditions. However, the variance of the derived constant
cannot be seen intuitively, particularly when large exponential terms are
included. An equation was derived, therefore, to describe the variance of
a sum of variates, with explicit treatment of exponential terms, corrections
for correlations among the experimental uncertainties, and separation of
sample preparation and observational errors. In addition, the problems of
translation of linear to logarithmic units were considered. Comparison with
several sets of experimental data indicates that the derived equation cor-
rectly predicts the observed variance of the constant caused by experi-
mental uncertainties,
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Table 2. Thermodynamic hydrolysis constant of aluminum for three observations

on three samples and an analysis of variance

Samples
Observations A B C
1 5.04 4.93 5.04
2 5.04 5.02 498
3 4.98 4.93 4.93
b 15.06 14.88 14.95
Total 0.019355 8 — .
Samples 0.005488 2 0.002744 1.190s
Error 0.013867 6 0.002311 —_—
Table 3. Analysis of variance of the original data for aluminum
hydrolysis from Table 1
Source ss DF MS F
Total 0.07476 17 = e
Treatments 0.03023 5 0.006046 2.2]us
Samples 0.01714 2 0.008570 3.13ns
Error 0.02739 10 0.002739 o
Pooled error 0.04453 12 0.003711 —
Source SS DF MS F
Total 0.07476 17 S 2L
Regression 0.00639 1 0.006390 1.490s
Residual 0.06837 16 0.004273 —
Lack of fit 0.02384 4 0.005959 1.61u8
Pure error 0.04453 12 0.003711 ——
Reg + LoF 0.03023 5 0.006046 P
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Table 4. Thermodynamic solubility product for gibbsite derived from

measurements of pH and [Al]

— Experimental— ——

BPeritedi——r———

Variance——

—log[AL] pH —log[H] |0g{l+%] logf(v) PK, Ios[M%} pKap
200 370  3.63 0.018 041  33.60 (0.001)2 (0.061)2
202 3.91 3.84 0.028 0.41 33.00 (0.001)* (0.061)2
3.00 396  3.93 0.034 0.21 33.51 (0.002)® (0.060)2
3.05 401 398 0.038 0.18 3339 (0.002)2 (0.060)*
4.08 421  4.20 0.061 0.06  33.66 (0.003)2 (0.059)2
420 423 422 0.063 0.06  33.72 (0.003)2 (0.059)2
546  4.58  4.58 0.134 0.05  33.96 (0.005)* (0.057)%
559 472 472 0.177 0.02  33.69 (0.007)2 (0.055)2




10.

11.
12.

Experimental Errors In Derived Thermodynamic Constants 27

Literature Cited

Benedetti-Pichler, A. A. 1936, The application of statistics to quantitative
analysis. Ind. Eng. Chem., Anal. Ed. 8:373-377.

Benedetti-Pichler, A. A. 1956, Theory and principles of sampling for chemical
analysis. p. 183-217. In W. G. Berl (ed.), Physical methods in chemical
analysis. Vol. I1l. Academic Press, Inc. New York.

Bliss, C. 1. 1967. Statistics in biology, Vol. 1. McGraw Hill, New York. 558p.
Clark, J. 8. 1955. Solubility criteria for the existence of hydroxyapatite. Can.
J. Chem. 33:1696-1700.

Draper, N. R. and H. Smith. 1966. Applied regression analysis. John Wiley
and Sons, Inc. New York. 407p.

Frink, C. R. and M. Peech. 1962. The solubility of gibbsite in aqueous
solutions and soil extracts. Soil Sci. Soc. Amer. Proc. 26:346-347.

Frink, C. R. and M. Peech. 1963. Hydrolysis of the aluminum ion in dilute
aqueous solutions. Inorg. Chem. 2:473-478.

Kittrick, J. A. 1966. The free energy of formation of gibbsite and AI(OH):—
from solubility measurements. Soil Sci. Soc. Amer. Proc. 30:595-598.

Kolthoff, I. M. and E. B. Sandell. 1952. Textbook of quantitative inorganic
analysis, 3rd Ed. The Macmillan Co., New York. 759p.

Ku, H. H. 1966. Notes on the use of propagation of error formulas. J. Res.
NBS 70C:263-273.

Weatherburn, C. E. 1947. Mathematical statistics. Univ. Press, Cambridge. 271p.
Youden, W. J. 1959, Accuracy and precision: evaluation and interpretation of
analytical data. p47-66. In 1. M. Kolthoff and P. J. Elving (ed.), Treatise on
analytical chemistry, Vol. 1. The Interscience Ency., Inc., New York.



POSTAGE PAID
U. 5. DEPARTMENT OF AGRICULTURE

o £ St

PUBLICATION
Permit No. 1136




