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Periodic phenomona in and climatology occur so widely that we 
tend either to adapt to them as unavoidable nuisances or are overimpressed 
by their day to day deviations. We can't "see the r the tree 
the variable occurs around the clock or through the it with s j  
atically unequal magnitudes, its underlying pattern can ur~en be expresseu 
logically in relatively simple trigonometric terms. When this classic math- 
ematical model is combined with an appropriate statistical analysis, we are 
better able both to describe the periodic trend and to study deviations from 
its pattern. For example we can separate weather into its orderly and its 
random elements and by this means estimate the probability of occurrence 
of critical temperatures. This approach is sufficiently novel, even to biolo- 
gists and climatologists with a background in modern statistics, that the 
technique is described here in some detail. Its applications are illustrated 
with a wide range of biological examples and a more detailed study of a 
typical climatological series. 

Periodic Regressior 

in Biology and Climatology 

C. I. Bliss 

Most non-linear regressions in biology and many in climatology are handled 
in one of two ways. The first is to convert the relation to a straight line by 
the selection, on either theoretical or empirical grounds, of a suitable unit 
for each variable, such as its reciprocal, logarithm, probit or logit. A sec- 
ond approach is to fit a polynomial equation relating the dependent variable 
y to successive functions of the independent variable x. In one familiar 
form, these functions are the powers of x, leading to an equation of the 
form 

Y = a + blx + b2x2 + b3x3 + . . . + bLxk (1) 

Given k + 1 values of our independent variable, the curve defined by this 
equation will fit exactly the mean responses yi at each x, if extended to k 
powers of x. In practice, we terminate the series as soon as the residual 
variation of y, about the fitted curve is comparable with the variation of 
the individual y's about their respective means. 

When the relation between x and y is periodic, our polynominal equation 
will be more rational if we substitute trigonometric functions of x for their 
powers, leading to harmonic or Fourier analysis, or "periodic regression" 
as it is termed by Aitken (1939). The problem is further simplified when 
the independent variable x is cyclical in character with a length fixed in- 
dependently of the response. Typical variables include the hour of day in 
the diurnal cycle, the month or week in the annual cycle, and the compass 
direction in dispersion from a center. We are not concerned here with 
cycles determined a posteriori, such as from fluctuations in the abundance 
of animals or of plant pests, nor with "cycles" which represent an age trend 
in a single group of individuals, such as the monthly em vroduction from 



a single set of pullets through the year. We will further assume that each 
of the equally-spaced subdivisions in the cycle is represented by a constant 
number of observations. Within these restrictions, periodic regression par- 
allels the more familiar curvilinear regression in which the orthogonal pcl- 
nomials represent the successive powers of X. 

The Sine Curve 

Many periodic biological functions can be fitted by the symmetrical sine 
curve. We start with f values of our dependent variable y at each of k 
observed times t (or other interval) within the cycle. The expected response 
Y at each t may then be computed from the sine curve, expressed con- 
veniently in the form 

where a, = j~ is the mean response over f complete periods or cycles. 
coefficient A is the semi-amplitude or one-half the range from the maxi- 
mum to the minimum Y. The constant c = 2 ~ / k  converts the numbered 
units of time, t = 0, 1, 2, . . . , k-1, in a single cycle to angular measure in 
radians. The statistic 0 is the phase angle or the time in angular measure 
of the maximum response Y. It shifts the origin for measuring time from 
an arbitrary starting point to to the time at which the response is a maxi- 
mum. The angles could be measured equally in degrees instead of in 

Time t for k.24 Intervals per Cycle 

Figure I .  The sine curve and its constants. 
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radians, but radians have been selected here as the more convenient. One 
complete cycle of 360° = 257 = 6.283185 radians. These various func- 
tions of the sine curve are shown graphically in Figure 1. 

For estimating its constants from the observed responses, we may re- 
write Equation 2 as 

Y I a ,  + alcos(ct) + b,sin(ct) (3) 

equation linear in the adjustable parameters at  and b,, where 
A = \/al' + b12 (4) 

and tan 8 = bl/al ( 5 )  

The expected response Y for a given t can be computed directly from 
Equation 3 without conversion to the original form. The range in units 
of y is equal to twice the semi-amplitude or 2A. To determine the correct 
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'IABLE 1. Cosines (ul)  and sines (v , )  for the harmonic analysis of cyclical data recorded in 

k equally-spaced fractions per cycle and numbered consecutively from t = 0 to t = k- 1. 

For t = 0-1 1 and 12-23: 
U2,V:: = U I , V I  (k=12) 
U I , V ~  = u?,v? (k= 12) 

For t = 0-7, 8-15, 16-23: 
U~,vn = U I , V I  (kf 8 )  

For k = 4: ul,vl = u?,v2 (k=8, t=0-3)  

For k 6: UI,VI  = U Z , ~ ,  (k= 12, t=0-5; ur,V? = u , , ~ ,  (k= 12, t=0-5)  

quadrant for the phase angle 0, we first determine from a table of trigo- 
nometric functions the angle in radians corresponding to tan 0' = Ibl/a,l, 
and from the signs of the coefficients al and bl convert 0' to the phase angle 
61 by Figure 2 (Brooks and Carruthers, 1953). Then on the time scale 
measured from to, the maximum response occurs at the time k6/27. Since 
the sine curve is symmetrical, the time for the minimum is one-half cycle 
before or after the time of the maximum. 

For any selected series of k equally-spaced intervals in each complete 
cycle, the cosines and sines corresponding to the successive intervals of 
t = 0, 1, 2, . . . k-1 are listed in the columns for ul and v, in Table 1. 
Each forms an orthogonal set of independent variates (within a negligible 
rounding error) similar to the orthogonal polynomials for the successive 
powers of x. With ul = cos(ct) and vl = sin(ct), Equation 3 may be 
written as 

Y = a, + alul + blvl (6) 

where 2ul = Tvl = 2(ulvl) = 0. The cosines and sines in Table 1 cover 
the series encountered most commonly and include the higher harmonics 
required for the Fourier analysis in the next section. Except for rounding 
errors, which usually may be neglected, the denominator of a,  and 
of bl is the same for all evenly-spaced series of the same length k, or 
Pu12 = Zvl' = gk. With this short-cut, the regression coefficients for a 
single measure at each time t (f = 1) are readily computed as 

al = 2(u1y)/Zu12 = [uly]/4k 
(7) 

and bl = L(vly)/Pv12 = [v,y]/$k 

With f replicated y's at each t, totalling Tt, the regression coefficients are 
computed directly from the Tt's as 

a, = L(ulTt)/fPu12 = [ulTt]/l,fk 

and 
(8) 

bl = Z(v,Tt)/fZv12 = [vlTt]/Jfk 

As an example of simple periodic regression, we may fit a sine curve 
to the monthly mean temperatures in New Haven (Table 2), for the 14 
years from July 1943, when the Weather Bureau station was moved to its 
present location at the municipal airport, through June 1957. The totals T, 
in the last row of Table 2 were multiplied by the variates ul and vl in 
Table 1 for k = 12 to obtain by Equation 8 the regression coefficients 
31 = 1763.0944/84 = 20.9892 and bl = 292.7604/84 = 3.4852. With 
:hese coefficients and the mean, a, = 8528.6/168 = 50.7655, the expected 
Y for each month has been computed by Equation 6 and the corresponding 
variates ul and v, in Table 1. The Y's have been plotted as the curve in 
Figure 3, together with the observed monthly means F,. In this as in most 
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I 

I The Fourier Series 

t h e  plotted means may not define as symmetrical a relation as the sine 
curve. By Fourier analysis we can add the higher harmonics, Corresponding 
t 2, 3, 4 or more complete cycles in the basic interval covered by one P 
c cle of the sine curve. If we add enough tenns the computed curve will & any observed series exactly, but the equation then has little meaning 
either biologically or climatologically. Our objective is to add no more 
tkrms than are needed to reduce the variance from the scatter of y,'s about 
the fitted line to the same magnitude as the residual error. We may stop 
4ell short of this if the scatter seems essentially random even though its 
vkriance is significantly larger than the residual variation. 

1 The sine curve in Equation 6 is extended with additional terms to 

I 

wpere up = C O S ( ~ C ~ ) ,  v2 = sin(2ct), u3 = cos(3ct), v, = sin(3ct), etc. and 
ch pair of coefficients ai and bi is computed with Equations 7 or 8, re- 

ul and vl by ui and v, for i = 1, 2, 3 . . . successively. The ui7s and 
the scale of t to orthogonal units in which P(uivi) = S(uiui) = 

2[vivj) = 0 where i # j. There is the additional advantage that for any 
&en k, Zui2 = Ivi2 = 4 k for all values of i, except the last term where 
k i s  even and then Pui2 = k. The values of ui and vi for the first terms of 
tQe Fourier series are given in Table 1 for k = 4, 6, 7, 8, 12 and 24 sub- 
dipisions per cycle. 

A seasonal trend which is not a simple sine curve occurs in the iodine 
value of butterfat at five stations in central Alberta, Canada, as reported 
bJ Wood (1956). Each entry in Appendix Table 1 represents duplicate 
adalyses of the weekly samples of butter in each month for two years be- 
gifining in April 1952, or an average of 17.3 determinations. Both the 
arinual total for each station and the month with the peak reading tended 
tolshift in going south from Edmonton to Calgary. According to Wood. 
the monthly readings in the two years, which have been averaged, did not 
differ significantly. Although a shift in the phase angle from one location 
toanother accounts for part of the complexity of the average curve, thc 
iodine values for each location could not be fitted adequately with a 
sebarate sine curve. 

From the sums of products of T, with the cosines (u,) and sines (vi) in 
Talble 1 for the first three harmonics, the seasonal trend of the means in 
thq upper part of Figure 4 is reproduced quite faithfully by the equation: 

I 

T h i s  curve is merely the overall mean, a,, = 36.955, plus the deviations 

for hamtIonic in each month, as the reader may verify from the last 
three rows of Appendix Table 1. The Fourier terms have been plotted 

in the lower part of Figure 4 as deviations from the mean a,, 
a.herc it is evident that they define successively 1, 2, and 3 complete cycles 
n ithin the year. 

the p-cscnt case the biological ~rl~plications of the successive har- 
monics are by no means clear. Iodine values are indicative of the unsatu- 
ri,icd fatty acid content of butter and are expected to be high during the 
,,,ss feeding season in May. AS noted by the author, the peak in August 
and September, most pronounced in the North and decreasing southward, 

Although the biological information gained in fitting a 
Fourier series is here questionable. the example has served its primary 
purpose of demonstrating that a ntly irregular curve can be fitted 
by harmonic analysis with a lim ~ber  of constants. 

n appare 
.ited num 

0 

D Three- term 
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Fourier Curve 

Component Cycles 

I I I I I I I I I 1 
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Month 

-. 
' ra l l re 4. Mean monthly iodine values for butterfat from ~ppend ix  Table 1. 
The sum of the deviations in the lower three curves, added to the mean (a*), 

the three-term Fourier curve in the upper diagram. 



differences between cycles in the first harmonic, with 2(f-1) degrees of 
freedom, almost certainly should be isolated and tested. In deciding how 
much farther to partition the interaction, our most useful guide, when 
available, is the theoretical or expected variance, with which we can com- 
pare each mean square. In its absence, we may subdivide the interaction 
into as many additional terms of the Fourier as have proved useful in 
fitting the means of all replicates. This rule is rough at best, since a sig- 
nificant higher term may repeat itself so consistently in all replicates thal 
it will not remove a systematic component from the interaction. Alter- 
natively, systematic trends in the individual cycles, corresponding to the 
second or 1 nother when averaged ovel 
all replicate 

Analysis of Variance 

The analysis of variance has the same function in period 
as in many other regression problems. The variation in y abou~  LIIC llLLeu 
curve is assumed to be normally distributed, equally variable over the 
length of the cycle, and with deviations independent of each other. The 
selection of a suitable transform may aid materially in achieving these 
objectives, as we shall see in a late >me problem 
is the potential dependence betwc s through a 
cycle. Despite the formal analogy randomized 
blocks, the responses in each row represent an ordered sequence rather 
than an arrangement upon which treatments have been superimposed at 
random. 

One approach is to fit a Fourier series to the column means and com- 
pute a serial correlation coefficient from the succes de- 
scribed by Anderson and Anderson (1950). In a ti1 I as 
of weather records or of attack rates by a contagioub ulbease, rnese cor- 
relations are often significant. An alternative approach, more consonant 
with the analysis of variance, is to fit a separate Fourier series with a 
limited number of terms to each replicate. The interaction of rows by 
columns, or of replicates by periods, is then subdivid~ arts 
as may be needed to remove the systematic differen end 
in each series and the mean trend. In this way we mdy scpalale LIK: Corn-  
posite interaction into cyclic trends and residual error. The same argun 
holds, of course, whether replicates represent successive cycles, such as 
years in Table 2, or sampling locations as in Appendix Table 1. The m 
nearly these separate curves define the periodic trend in each replic 
with the fewest terms, the more nearly will the residual error provide 
tinbiassed estimate of the random error. 

With an orthogonal design, the calculation is very similar to that for 
randomized blocks. The sum of squares between the f totals T, for repli- 
cates, representing successive complete cycles or different locations, cor- 
responds to variation in the statistic a, of our separately fitted series. When 
these totals suggest a trend, we may wish to isolate its linear and quadratic 
terms to test its form and significance. The sum of squares between the k 
totals T, for each interval within the cycle may be subdivided progressively, 
beginning with al and bl for the first harmonic with two degrees of free- 
dom, and following with the second and higher harmonics from the Fourier 
series, until the scatter about the fitted curve contains no element which 
we can isolate with profit. 

The remaining sum of sc tion of replicates by measure 
intervals within the cycle, includes not only the random error but also th 
variation dicate to replicate of each harmonic in the Fourier ser 
in so far represent systematic rather than random deviations. 1 
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the term tj, which might represent a third or higher term in the Fourieir 
series or discrepancies common to each replicate year from some other 
source. All remaining elements, with subscripts i, measure the differences 
from year to year (or replicate to replicate) in successive terms of the 
Fourier equation. 

Calculation 

When the elements in Equation 10 are rearranged in the order in which 
their variation is isolated in successive rows of the analysis of variance, 
we have 

Yij  = + ri + ((LIUI~ f P I V I ~ )  f (a2~2jf Pe~zj)  f t j  

Row 9 1 2 3 4 (11) 

+ (alriul j+bl'ivl j) + (ae'iu2j+ befivej) + eij 

5 6 7 

Separate sums of squares are attributable to the unique combinations of 
these elements enclosed by parentheses in Equation 11, the number beneath 
each term identifying the row in the analysis of variance. Their practical 
calculation is outlined in the workform of Table 3, which may be reduced 
to that for a sine curve by omitting rows 3 and 6, or extended with addi- 
tional Fourier terms. Square brackets [ ] designate the sum of the 
squares or products of the factors they enclose measured from their re- 
spective means as the origin, i.e. [y2] = T(y-p)' = Ty2 - S2y/fk, or cor- 
respondingly [uly] = T{(ul-CI,) (y-I) ) = T(uly) since Xul = 0. Its 
other symbols are defined above, in the workform or in Equations 7 and 8. 
For each sum of products the identity, 2 [uly] = [ulT,], provides a useful 
check on the arithmetic, which holds similarly for the products with vl, 
u2, v2, etc. The sum of squares in each row, designated as S1 to SI1, is 
divided by its degrees of freedom (DF) to obtain the corresponding mean 
square (MS). 

When a given pair of coefficients, ai and bi, varies significantly between 
replicate curves, its harmonic may differ in amplitude, in phase, or in both. 
Since amplitude and phase angle are computed from non-linear combina- 
tions of ai and bi, their relative contributions to the sum of squares in 
row 5 or 6 cannot be separated orthogonally. However, if we disregard 
phase, we can estimate the total variation in amplitude from replicate to 
replicate in terms of a single y2 from ,IkT(A-A)?, where A is the semi- 
amplitude of a given harmonic in a single replicate (Equation 7) and A 
that for the same harmonic in the average curve (Equation 8). For the 
first harmonic this reduces algebraically to the sum of squares defined in 
row 10 of Table 3. The difference between this sum of squares and that 



in row 5, S,-S,, = S,,, we may attribute to differences in phase. A sig- 
nificant variation in the sccond harmonic in row 6 can be subdivided 
similarly. 

TABLE 4. Variance components for the expectations of the mean squares ( M S )  in  
Table 4, where each M S  = S,IDF. 

Expected mean square 
- 

1 

Tests of significance 

2 

3 

4 

From our model in Equation 11, the mean square in each row of the 
~nalysis of variance contains potentially the variance components in Table 
4, on the assumption that each source of variation about the average 
Fourier curve can be considered a random variable. Replicates, for ex- 
ample, are assumed to be equivalent to a random sample of complete 
:ycles, and the variation of replicates by each term in the Fourier series 
.o represent similarly a random selection. We will further assume that any 
:orrelation between successive observations within a replicate is removed 
in the interaction of replicates by al and bl and by a2 and b2 in rows 5 
and 6 of Table 3, where the effect of each pair of coefficients is symbolized 
as "(a,+bl)", "(a,+b2)", etc. 

Under these assumptions, the variance components are essentially the 
;ame as those for other replicated regressions, whether linear, curvilinear 
Ir harmonic. The components for regression from ai and bi in Equation 11 
3re designated as a;.' and beL in Table 4 and converted to units of yZ by the 
factor 3 k = Xui' = 2vi2. The variance components a-ith subscripts for 
replicates (r) and time (t) are already in units of y2, as is the random 
variance a' which recurs in each MS and may be an undivided composite. 

The error variance for a test of significance or a measure of precision 
lepends upon which of the relevant components in Table 4 differ effective- 
v from zero. It may be a single mean square or a linear combination of 
~ariances, and will frequently be designated as s'. When testing the null 
hypothesis that the additional component is zero in the mean square Vi in 

a2 -k +k(a,'+ b,'), f fa,' *kf(at2+ PI2) 

a? -k +k(a,'+ be2)- + fa,' + +kf(n,++p,") 
a? 4- fs,? 

row i = 1, 4, 5 or 6, the appropriate s2 is Vi. The significance of each 
observed F = Vi/Vi is determined by reference to a table of F or the 
variance ratio, such as that given by Fisher and Yates (1957) or by Pearson 
and. Hartley (1954). If the mean square for scatter about the fitted average 
curve in row 4, for example, is significantly larger than that for the residual 
variation in row 7, we would conclude that the deviations about the repli- 
cate curves have a common element. 

An F test of the Greek coefficients in rows 2 and 3 is more involved. If 
the scatter in row 4 or the interaction in row 5 or 6 should prove less 
than or negligibly larger than the random error, its component would drop 
out of the sum in row 2 or 3 of Table 4, and the remaining components 
would determine which single mean square is the appropriate error. When 
both the scatter in row 4 and the interaction of the first or second harmonic 
with replicates are significant, the appropriate error is a linear combina- 
tion of the mean squares (Vi) in three different rows (Anderson and Ban- 
croft, 1952). For the effect of (al + b, ), the error is s =  V4 + V, - Vi 
with approximately nf degrees of freedom, estimated as 

For an approximate tcst of significance, we refer 

to a table of the variance ratio (F) with nl = 2 and n2 = n' degrees of 
freedom. Similarly, for the second term in the Fourier series the error is 
s2 = V + VO - Vi, with Ff and n' determined by Equations 12 and 13, 
replacing subscript 5 by subscript 6. 

Exarnples 
The analysis of variance in Table 5 has been computed from the monthly 

mean temperatures at New Haven in Table 2. An inspection of the yearly 
or replicate totals reveals no obvious trend, except possibly for a series of 
warmer years in the middle of this 14-year period. Since a parabola fitted 
to the T,.'s (not shown here) did not approach significance, we will con- 
sider the differences in T,. a random variable. Their mean square Vl ex- 
ceeds the interaction Vi significantly (P < 0.02). The sine curve for the 
monthly totals (T,) accounts for 96.9% of the total sum of squares and 
is obviously highly significant. Although the mean square for the second 
term in the Fourier series, (a, + be), is larger than the scatter around the 
two-term Fourier curve, its error depends upon the significance of the 
mean squares in rows 4 and 6. 



TABLE 5. Analysis of variance of the monthly mean temperatures 

at New Haven, Conn., in Table 2. 

"When recomputed with Xut" = ZvI2 = 5.999824 instead of their expectations, 
t k  = 6, these SS were corrected to 38027.43 and 56.64 respectively, no others 

differing by more than 0.01. 

When compared with the interaction Vi, both the first and second 
Fourier terms varied significantly from year to year, but the scatter about 
the average curve in row 4 fell within the acceptable range. This last result 
is in line with Craddock's finding (1955) that temperature records in the 
northern hemisphere agree quite generally with a two-term Fourier series. 
Both the scatter in row 4 and its interaction with years in row 7 might 
have been subdivided by adding a third term to the Fourier series, as in 
fact was done, but without a significant reduction in the remaining mean 
squares. Since V4 is not significant, we may retain our null hypothesis 
that its variance component U,?S zero, and compare the mean squares 
from the first and second terms in the Fourier curve for the 14-year 
average with their respective interactions by years. For (a2 + b?), we have 
F = 20.305,/9.122 = 2.20, which is not significant. 

To separate the differences in amplitude and in phase, the variations of 
the Fourier curve from year to year in rows 5 and 6 have been subdivided 
in the last four rows of Table 5. These indicate that for both the first and 
second harmonic, the amplitude or annual range differed somewhat more 
from year to year than the phase or date of the maximum. The variation 
in the mean monthly temperature will be considered later in more detail. 

Row 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I 1  

12 

13 

TABLE 6 .  Analysis of variance of the average monthly iodine values 

in Appendix Table 1. 

Term -- 
Between years 

Months, effect of (a, + b l )  
" effect of (a, -k b,) 

" scatter 

Years X Month (a, 4- b , )  

' X ' (a2+b2)  

" X " scatter 

Total 

Correction, C., : 

Year X Amplitude, 

Year X Phase, 

Year X Amplitude, 

Year X Phase, 

DF 

13 

2 

2 

7 

26 

26 

9 1 
-- 

167 

1 

13 

13 

13 

13 

Row Term F F' 

1 Place 

2 Months, (a,  + b l )  18.56f 

3 (a, + bl)  

3' (a, + b,, ) 

4 scatter 

5 Place X Month (al 4- b,)  

6 " X ' (a,+b,) 

7 " X " scatter - 
10 Place X Amplitude1 

1 1  " X Phase, 

From the analysis in Table 6 of the iodine values in Appendix Table 1, 
the three-term Fourier curve accounts for 97.9% of the variation between 
the monthly totals; there would be little point in adding more terms to the 
series. The five creameries or replicates differed very significantly in their 
means and in the first harmonic (a, + bl). When the latter (row 5) was 
subdivided between amplitude and phase (rows 10 and 11), differences in 
phase proved the more important. The interaction of place with the third 
and higher terms proved so nearly equal that they have been pooled in 
estimating the random error in row 7. From its variance components, the 
error for testing (a,+bR) in row 3' is the mean square in row 4. Since all 
random components in the mean squares for (al+bl)  and (a2+b2) are 
significant, each is tested in terms of F'. For the first term, F' = 47.4945/ 
(0.5135 + 2.1614 - 0.1 166) = 18.56 and the divisor (2.5583) has ap- 
proximately n' = 2.5583?/(0.513575 + 2.1614?/8 + 0.1 166v28) = 
10.27 degrees of freedom by Equation 10, and for the second term F' = 
6.65 with n' = 7.62. All three terms of the curve plotted in Figure 4 are 
clearly significant. 

A systematic trend from replicate to replicate may be illustrated by the 
progressive change in the standing electrical potential (Burr, 1945) of an 
elm tree, which varies diurnally. The hourly potentials, as read from the 
daily record for eight three-day periods from A u p s t  1 to 25, 1953, have 
been coded in Appendix Table 2 for ease of analysis. The hourly means 
(in code) have been fitted with the two-term Fourier curve (Equation 9): 

Y = 49.964 - 6 . 6 0 5 ~ ~  - 15.084~1 + 1 . 3 5 7 ~ ~  + 1.146~2 

F 

2.19 

1695 

2.20 

1.69 

2.29 

1.87 

2.60 

1.98 

2.08 

1.65 

SS 

138.95 

38026.32* 

40.07 

57.76" 

291.71 

237.17 

445.08 

39237.06 

432958.44 

165.55 

126.16 

132.05 

105.12 

MS 

10.689 

19013.160 

20.035 

8.252 

11.220 

9.122 

4.891 

12.735 

9.705 

10.158 

8.086 



Decoded, the estimated average potential for each hour is 

Y' = -66.654 + 2 . 2 0 2 ~ ~  + 5.028~1 - 0 . 4 5 2 ~ ~  - 0 . 3 8 2 ~ ~  

which has been plotted as the solid curve of Figure 5. Except for a slight 
flattening at the upper and lower limits, as if limited by maximal and 
minimal potentials, the fit seems very good; how good we can determine 
rom the analysis of variance in Table 7. 

-761 I 1 I I I I I 1 
I2 4 8 12 4 8 12 4 8 

om. p.m. a.m. 

Figure 5. Mean hourly potentials in an elm tree fitted with a two-term 
Fourier curvc (solid line) and with a sine curve (broken line), from Ap- 
pendix Table 2. 

Over this period of 25 days, the average potentials, all initially negative, 
decreased progressively, as indicated by the rise in T, in Appendix Table 2. 
In consequence, the variation between replicates has been subdivided into 

3. highly significant linear trend and the scatter about this trend, in rows 
1 and l', with the latter still much greater than the random error in row 7. 
rhis trend was succeeded toward the end of the month by a drastic change 
n the diurnal pattern, possibly in response to the prolonged dry spell in 
hat August. 

Since the mean squares for both the first and second Fourier terms are 
so much larger than the remaining variation between the hourly means 
(row 4), the two-term Fourier curve seems to fit the plotted points in 
Figure 5 better than the simpler dotted sine curve. However, the interaction 
~f replicates by the first and by the second term both exceed the residual 
~ariation so considerably that the significance of the mean squares in rows 
2, and 3 must be tested by F'. By this criterion, the first term or sine curve 

TABLE 7. Analysis of varlance of the tree potentials for the eight 3-day periods 

in Appendix Table 2. 

is highly significant but not the second term (F' = 1.78, P = 0.20). De- 
spite its apparently better fit, the more complex curve offers no real ad- 
vantage in describing the average diurnal variation in tree potential. AS 
judged from Table 7, in studying the relation between the daily tree poten- 
tials and environmental factors, such as temperature, cloudiness, soil 
moisture and humidity, the hourly readings for each day might well be 
replaced by the first five constants in a Fourier series (a,, al, bl, as and b2) 
and these used as the dependent variables in a comprehensive analysis. 

Transformations of the Variate 

In meeting the assumptions of the analysis of variance, the adoption of a 
suitable unit for the response is often critical. An unsuitable original meas- 
urement or count can often be transformed to a unit which is either addi- 
tive or has a variance independent of the mean. In fulfilling one require- 
ment we frequently meet or approximate the other assumptions in the 
analysis of variance, and in some cases acquire an expected variance, with 
which the observed variation can be compared. 

Sometimes the transformation can be based upon past experience with 
the variate or upon a biological relation. Thus, if we expect our measure- 
ment to change proportionately or percentagewise with time, such as the in- 
cidence of a contagious disease, the appropriate unit would be the loga- 

MS 
- 

20259.796 

947.971 

13015.062 

15 1.398 

15.642 

186.424 

74.86 1 

5.376 
~p - -- 

260.390 

1 12.457 

Row 

1 

1' 

2 

3 

4 

5 

6 

7 

8 

10 

11 

F, F' 

21.37 

176.33 

66.17f 

1.78f; 

2.9 1 

34.68 

13.92 

-- 

48.44 

20.92 

DF 

1 

6 

2 

2 

19 

14 

14 

133 

191 

7 

7 

Variance due to 

Linear trend on periods 

Scatter about trend 

Hours, ( a l + b l )  

" (a,+b.) 

" scatter 

Period X Hour (a ,+b l )  

' X ' (a ,+b?)  

" X " scatter 

Total 

Period X Amplitude, 

" X Phase, 

SS 
- 

20259.80 

5687.82 

26030.12 

302.80 

297.20 

2609.93 

1048.06 

715.01 

56950.74 

1822.73 

787.20 



rithm of the incidence. If the initial variable is the number of occurrences 
or individuals in each unit of time, its distribution, apart from the periodic 
effect, may well be Poisson. The expected variance of each Poisson count 
is its unknown population mean, but the appropriate transform, the square 
root of each count, has a constant variance of 0.25. Our data may be 
binomial percentages which can be assumed to measure indirectly an un- 
derlying threshold response, some function of which is normally distributed 
in the biological population. The additive transform is then the probit, or 
the unit, usually the logarithm, to which the probit is linearly related. 

Since the logarithms of many biological measurements are 'normally 
distributed, the logarithmic transformation should be of equal value in 
periodic regressions, such as of contagious diseases in animals and plants. 
An example from man is the seasonal variation in the death rate from 
pneumonia, as recorded in the monthly reports of the Metropolitan Life 
Insurance Company (1945-1955). The month of September, when deaths 
are near a minimum, has been selected here as the starting time (to) for 
each annual cycle in Appendix Table 3, where each monthly rate per 
100,000 has been transformed to its logarithm, a unit which stabilizes the 
variance through the year. The log-death rates for September 1945 through 
December 1949, when deaths were classified by the 5th Revision of the 
~ z r n a t i o n a l  List of Causes of Death, have been adjusted here to conform 
with the 6th Revision used subsequently by subtracting from each earlier 
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Figure 6. Mean monthly log-death rates from pneumonia and fitted sine 
curve, from Appendix Table 3. 

log-death rate the mean difference (0.235) during the twelve months of 
1950 when both criteria were reported. 

The sine curve, Y = 1.2087 - 0 . 1 6 4 7 ~ ~  + 0.0535vI, has been com- 
puted with Equation 8 from the monthly totals T, and plotted in Figure 6. 
By Equation 4 the seasonal range in the mean log-death rate is more than 
two-fold, 2A = 0.3464 = log(2.220). By Equation 5 and Figure 2, its 
maximum at tan 0' = 0.32507 and phase angle 8 = 2.8273 radians, cor- 
responds to 5.400 months from the starting point of each annual cycle in 
mid-September. This places the maximum death rate at approximately 
February 25 and the minimum six months later. 

TABLE 8. Analysis of variance of the log-death rates from pneumonia 

in Appendix Table 3. 

The progressive decrease in the yearly totals (T,) (Appendix Table 3) 
has been fitted with the linear and quadratic orthogonal polynominals, xl 
and x2, for a series of 10 (Fisher and Yates, 1957). This parabola accounts 
effectively (97.4%) for the trend between years, as judged from rows 
1 to 1" of the analysis of variance (Table 8). A similar proportion (97.8%) 
of the sum of squares between the monthly totals (T,) is absorbed by the 
harmonic coefficients al and b,. Since the mean square for the second 
harmonic is less than that for the remaining scatter, little would be gained 
by adding more terms. . 

Row 

I 

1 ' 

I "  

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

Term 

Years, trend on x l  

" trend on xl 

" scatter 

Months, (a ,  + b l )  

' ( a r + b , )  

" scatter 

Years X Month (a,  + b l )  

" X " ( a2+b2)  

" X " scatter 

Year X A, 

" X Phase, 

" X A? 

" X Phase, 

F. F' 

246.09 

19.74 

1.52 

107.83i 

0.25t; 

2.40 

2.44 

2.72 

3.58 

1.31 

3.76 

1.67 

DF 

1 

I 

7 

2 

2 

7 

18 

18 

63 

9 

9 

9 

9 

SS 

.a0964 

.06494 

.02303 

1.79995 

.00445 

.03650 

.09540 

.lo607 

.I3662 

.06990 

.02550 

.07347 

.03260 

MS 

30964 

.06494 

.00329 

,89998 

.00223 

.00521 

,00530 

.00589 

.00217 

.00777 

.00283 

.008 16 

.00362 



The variation from year to year in both of the first two harmonics ex- I 
ceeds the remaining interaction with years significantly, despite the disap- 
pearance of the 2nd harmonic from the average curve. When isolated from 
the residual sum of squares in row 7, the mean squares for the higher 
terms decreased progressively, but in the absence of an expected error 

I 
variance with which to compare them, they have been pooled in the 
analysis. As judged from the last four rows in Table 8, the first two 

i 
harmonics were considerably more stable in phase from year to year than 
in amplitude. 

I 
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Figure 7. Mean monthly log-incidence of poliomyelitis in the United States 
with two-term Fourier curve, from Appendix Table 4. 

,ABLE 9. Analysis of variance of seasonal incidence of poliomyelitis 

in Appendix Table 4. 

Square root transform 

The advantages of a theoretical error term are evident in the square root 

Row 
-- 

1 

1' 

1" 

2 

3 

4 

5 

6 

7 -- 
8 
-- 
10 

1 1  

12 

13 

- 

I transformation for a Poisson variate. Data on the number of normal human A similar analysis of another contagious disease with a marked seasonal 
births per hour have been assembled by King (1956) from the records of incidence, poliomyelitis, reveals a different pattern. The U. S. monthly 

I five hospitals, the two with the fewest births having been combined in incidences per million have been changed to logarithms in Appendix 
Appendix Table 5 into a single series (A) .  If the number of births per Table 4 (Serfling and Sherman, 1953, 1958) and analyzed in Table 9. 
hour within each series had varied entirely at random, we would expect Although a parabola accounts for much of the overall difference between 
its 24 values to follow the Poisson distribution and its variance to equal years (T,), the scatter about this trend (row 1") is here far larger than 
its mean. Because of differences in the size of the four series and potentially that about the annual curves (row 7) .  Instead of a simple sine curve, the 
in the hour of birth, the variance has been stabilized by transforming monthly totals (T,) define the two-term Fourier curve in Figure 7, with 
each number of births, ranging from 153 to 508, to its square root (Bart- both terms significant and the equation 
lett, 1936). The hourly means have been plotted in Figure 8 and fitted 

DF Term 

Years, linear trend 

" quadratic curv. 

" scatter 

Months, (al + bl)  

' (a? +bz)  

" scatter 

Years X Month (al + b l )  

" X " (az+b2) 

" X " scatter 

Total 

Years X Amplitudel 

" X Phase, 

" X Amplitude, 

" X Phase? 

This increases in 24 weeks from a minimum, approximately on March 23, 
to a peak 35 times as great on September 7, and then returns in the fol- 
lowing 28 weeks to its minimum. Here the variation in both terms from 
year to year is about equally distributed between amplitude and phase. 

with the sine curve, Y = 18.3542 + 0 . 1 0 8 5 ~ ~  + 1 . 3 6 1 5 ~ ~ .  
The adequacy of a simple sine curve has been tested by the analysis of 

variance in Table 10 of the transformed variates y. If our Poisson hypo- 
thesis is correct, the mean square for error in row 7, s2 = 0.242 with 63 
degrees of freedom, should not differ significantly from its expectation 
0.25. Since the agreement is excellent, each sum of squares for which s2 

SS 

28 

28 

98 

MS 

179 

14 

14 

13 

14 

F, F' 

65.89999 

.71986 

.74237 

.I9934 

.I9824 

.05142 

.05303 

.01424 

.01416 

14.37 

14.82 

3.98 

3.96 



Hour of Day 

Figure 8.  Mean hourly incidence of births in five hospitals and sine curve, 
from Appendix Table 5. 

serves as the error becomes a x2 when divided by 0.25 and has the same 
number of degrees of freedom as before. 

The average sine curve in Figure 8 accounts for 89.9% of the variation 
in the means, with the highest birth rate at 6:12 a.m. Although the re- 
maining scatter is significant (x' = 40.42, P = 0.007), it would not be 
reduced appreciably by adding the second term in a Fourier series. Sepa- 
rate sine curves for the four series also differed significantly, primarily in 

TABLE 10. Analysis of variance of the hourly frequency of human births 

in Appendix Table 5; x2  = SS/0.25. 

Row Term 

I Between series 

2 Hours, effect of (a, 4- b, ) 

4 ' scatter 

5 Series X Hour (a, + b , )  

7 " X " scatter 15.2561 
- .  

8 Total 872.3891 
-- --- 
10 Series X Amplitude, 

11 " X Phase, 

amplitude and relatively little in phase. The larger deviations in birth time, 
or its recording, in row 4 tend to recur in all four series, due in part, King 
suggests, to similarities in hospital routine. Thus the recording of births 
may be delayed by the nurses' conference between 7 and 8 a.m. when the 
staff changes, and the balanced low and high points in the hours starting 
at 3 and 4 and at 7 and 8 p.m. may have similar explanations. This loca- 
tion of observation periods when the recording may be at fault is another 
advantage of periodic regression. Because of the significant variance com- 
ponents in rows 4 and 5, the critical test for (al + bl) in the average sine 
curve is F' = 30.80 with an error variance of s' = 1.4538 (n' = 8.19) 
and P < 0.001. 

Prob it transform 

In biossays of toxicants, such as insecticides or fungicides, and of drugs, 
the susceptibility of the test organism varies so commonly and usually so 
unpredictably that a reference or Standard preparation is almost invariably 
tested concurrently with the sample or Unknown. The variation in sus- 
ceptibility may be so large, however, as to complicate the selection of a 
suitable range of dosage levels, especially when the response is a binomial 
percentage. In an extreme example, the same series of fungicidal concen- 
trations might kill all test spores at one season and none at another. In 
either case the experiment would be valueless as an assay. If the spore 
susceptibility were to vary predictably through the year, the concentra- 
tions could be so adjusted as to obtain on each occasion an adequate num- 
ber of intermediate mortalities between 0 and 100 percent. A response in 
which the seasonal variation has been studied systematically is that of the 
toad Bufo arenarwn to chorionic gonadotrophin (Penhos et al, 1954). For 
two years 40 male toads were collected in the field on the first of each 
month and on the following day injected in four lots each of 10 toads 
with the same four dosage levels of the International Standard. The num- 
ber of individuals in each lot which reacted positively, by releasing sperm, 
is recorded in Table 11. Not more than one dose in each test produced a 
reaction of either 0 or 100 percent. 

Our problem is to predict from these data the response to be expected 
at each dosage level in each month of the year. As an all-or-none reaction, 
we would expect the probit for each percentage to be linearly related to 
the logarithm of the dose, as indeed proved true. The first step, therefore, 
was to convert each percentage between zero and 100 to its empirical 
probit, and to estimate the provisional slope b = 5.27 from these values 
on the assumption that all 24 curves are parallel. From these parallel pre- 
liminary curves a provisional expected probit could be estimated for each 
lot in which none or all of the toads reacted, and then by suitable tables' 



TABLE 1 1 .  Number of toads, Bufo urenarunz, in each group of 10 reacting positively 
to four different doses of chorionic gonadotrophin measured in international units 
per animal, and the log-ED50 computed from each test and from the average sine 

curve. (Penhos et al, 1954) 

(Fisher and Yates, 1957) its corresponding working probit. This com- 
pletes the set of 24 probits at each of the four dosage levels, their sums 
leading to a new un\vc~shted provisional slope of b = 5.704. From the 
sums of the 8 probits for each of the 12 calendar months, a sine curve 
could be computed by Equation 8 for predicting the mean probit in each 
month as Y = 4.9751 + 0.5327~1, - 0.2693v,. With the provisional b 
and Y it was a simple matter to calculate the expected probit for each af 
the four dosage levels in each calendar month. These determine the weight- 
ing coefficients w and, with the observed proportion of positive reactions in 
each lot, the working probits y for computing the maximum likelihood 
estimates of the 24 curves. (Bliss, 1952; Finney, 1952) \ 

The variation in y about the 24 separately computed curves was well 
within the sampling error, Zx2 = 15.84 for 38 degrees of freedom. When 

S 
tested for differences in slope, the curves proved satisfactorily parallel 
(xs2 = 4.28, n = 23) with a combined slope of b,. = 5.4724. Given this 
slope and for each curve its weighted mean log-dose Z and probit y ,  the 
ED50 in logarithms has been determined for each month as listed in the 
Table 11. The sums of the replicate responses in the two years were then 
fitted with the single sine curve 

Log-ED50 = 1.4083 -- 0.08987~1 + 0 . 0 4 4 6 2 ~ ~  

with which the expectations in the last column of Table 11 have been 
determined. The computed curve and the observed log-ED50 for each 
month have been plotted in Figure 9. 

In an analysis of variance, the log-EDSO'S for the two years, agreed in 
their annual means, in their separately fitted sine curves, and in the random 
scatter about these curves. An expected variance was then determined for 
each log-ED50 from the sum of the weights (Sw) for its log-dose probit 
curve and the square of the difference, (y-5)2. These varied by less than 
7 percent so that - an average variance, ^rr2 = 0.001795, could be based 
upon two means, Bw = 18.775 and (5-G)' = 0.06742, from the internal 
evidence of the separate monthly determinations. With this expected error 
variance, the total sum of squares about the average sine curve (from 
the analysis of variance of the log-ED50's) could be converted to x2 = 
0.023881/0.001795 -- 13.31 with 21 degrees of freedom. 

Month 
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- 36 

- 32 

1952 1953 

Figure 9. Log-ED50 for gonadotrophin in toads in 24 successive months 
and annual sine curve, from Table I I .  

The observations in Table 11 agree so well with our mathematical model 
that the three constants in the sine curve plus the combined slope b provide 
an adequate description of the response of this species to gonadotrophin 
through the two years of the experiment. Tndeed, the three main sources 
of variation - of the working probits y about the 24 straight lines, bc- 
tween the slopes of these lines, and of the log-ED5O7s about the sine 
curve - all had smaller x"s than would be expected binomially and were 
consistent with one another. When totalled over all sources. Zx" 33.425 
with approximately 82 degrees of freedom, after allowing for each probit 
with an expectation of less than 0.5 positive or negative response. The 
probability for so small a combined x.', P < 0.000,001,is well outside the 
range attributable to our initial hypothesis of simple binomial variation. 

The seeming paradox can probably be traced to differences in the in- 
herent sensitivity of the field-collected experimental animals. If on a given 
day these represented several collecting points with unequal thresholds of 
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-- 
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bers formerly squared are here cross-multiplied, all other operations being 
identical. Comparisons of the mean squares from rows 2 and 4 show in 
the column for [y" a well-marked sine curve ( F  = 17.17) in terms of 
the heat exchange but in that for [x2] no trace of a sine curve ( F  = 0.34) 
in terms of the mixing ratio. In consequence, the covariate x is here essen- 
tially an environmental rather than an explanatory adjustment. The second 
term of a Fourier series fitted to the heat exchange proved negligible and 
has not been isolated in Table 12. In the error row, representing the inter- 
action of days by scatter, the highly significant linear regression of y upon x 
(F = 33.65), accounts for 100 X 0.014303/0.031714 = 45% of the 
unadjusted error in the log-BTU, y. 

Figurc! 10. Log-BTU exchange in cows and sine curve for intervals start- 
ing a t  each stated hour, adjusted for differences in relative humidity, from 
Appendix Table 6. 

After correction for the covariate, the ratio of the rcduced mean square 
for the average sine curve in row 2 has increased relative to that for scatter 
in row 4 ( F  = 19.57). However, both the scatter in low 4 and the inter- 
action of days by (a, + bl)  in row 5 are so very significant ( P  < 0.001 ), 
that the appropriate error for the average sine curve i j the combination of 
the reduced mean squares in rows 4, 5 and 7, s' = 0.001708+0.004332 
-0.000425 = 0.005615 with 5.14 degrees of freedom, from which F' 
= 5.95 and the true significance of the adjusted curve is P < 0.05. The 
hourly means, adjusted for the covariate x with the slope by, = 0.11068, 
have been plotted in Figure 10 with the adjusted sine curve, Y = 0.47793 - 
0 . 0 0 7 3 6 ~ ~  + 0 . 0 4 2 5 5 ~ ~ .  

Precision of the Computed Curve 

The statistics of the Fourier curve, such as its mean amplitude and phase, 
are estimates subject to error. In considering their precision, we will restrict 
ourselves to the first harmonic or sine curve. Of the several sources of 
variation to which it is subject, the most nearly random is the residual 
error about the series of curves fitted separately to each replicate and 
designated as U' in Table 4. A second source is the scatter of, say, the 
monthly means of the f replicates about the average fitted curve, which 
involves the additional variance component at2. A third source, the varia- 
tion between the sine curves fitted to each replicate, is divided between 
the sum of squares for replicate means or totals (a,) with f-1 degrees of 
freedom, and that for the interaction of replicates by (al+bl) with 2(f-1) 
degrees of freedom. The replicate means especially may include a system- 
atic element which, when segregated, leaves an essentially random com- 
posite of a' and u,', as in the analysis of the tree potentials in Table 7. 
For predictions from the average curve to the population of which the 
replicate equations are a sample, the error variances for a,, and for the 
regression coefficients al and b, rarely contain quite the same components. 

Error terms for each statistic 

The error variance of each statistic, as derived by large sample theory, 
is in terms of the population variance 02, but in practice is solved with an 
estimated s2 based upon the mean squares in an analysis of variance. The 
statistics a,, a, and bl in Equation 3 or 6 have error variances similar t o  
those for linear regression equations. The variance of a, is 

V(a,) = u2/N (14) 

for N values of the variate y, where our estimate of u2 is usually the mean 
square between replicates in an analysis of variance. In common with the 
linear regression coefficient, the error variance of al and of bl is 2 divided 
by the denominator of the coefficient or 

V(al) = V(bl) = u2/f2ul2 = 2u2/fk (15) 

where f is the number of replicates at each of k intervals in the cycle. The 
estimate of a' will depend upon which of the variance components defined 
in Table 5 have proved significant in the analysis of variance. 

The functions of al and bl are of as much interest as the coefficients 
themselves. One of these, the semi-amplitude A = Val" b12, can be 
shown to have the same variance as the coefficients from which it is com- 
puted or 

V(A) = 02/fSu1' = 2u2/fk (16) 



These variances are in units of y2. In contrast, the variance of the phase 
angle 0 = bl:'al, is in terms of radians squared and is estimated as 

V(0) = 2u2/fkA' (17) 

This can be converted, of course, from radians to units of the original 
cycle. The square root of each variance is the standard error of its statistic. 
When computing confidence or fiducial limits for a given probability 1 -P, 
the standard error is multiplied by the corresponding Student's t for the -(D 

degrees of freedom n in the estimate of u'. 
These estimates of precision may be illustrated with the example in 

Appendix Table 2 on the diurnal variation in the standing potential of an 
elm tree, which includes a trend. Since each variate y is the sum of the -d 

potentials at a given hour on three successive days, coded by changing 
the sign and subtracting 150, reversing the code and dividing by 3 con- 
verts each y to the original unit. Each mean square in Table 7 is decoded 
by dividing by 3% Because of the progressive decrease in the average -(u 

potential through the period covered by the data, the estimate of a ,  and its 
error are contingent upon the date for which the equation is to be solved. 

For any day (x)  from August 1 to 25, 1953, inclusive, our estimate of 
the position of each curve is a,, = -60.359 - 0.4751 x. With this pro- w -- 
viso, the variance of a, is computed with the mean square for the scatter - 
about the trend, 947.9706/9 = 105.3301 to obtain by Equation 14, o 

V(a,) = 105.3301/192 = 0.54859. At the mean date, x = August 13.25, 
the standard error of a, is \/0.5486 = 0.7407; at any other date its vari- . s o! 

d o 0  -(U 

ance would be increased by the variance of the slope multiplied by (x-2)'. I 

Whenever the variation in T, defines a trend, the estimate of a, is subject 
to a similar limitation. 

Since the mean squares for both scatter and the interaction of replicate -* 
by (al+bl) are here significant, the variance of the regression coefficients I 

a, and bl is a linear combination of three mean squares, s' = (15.6421 
+ 186.4238 - 5.3761)/9 = 21.8544 with 15.50 degrees of freedom 
(Equation 12). The regression coefficients, a, = 2.2017 and bl = 5.0279, - w 
and the semi-amplitude, A = \/30.1275 = 5.4889, have identical vari- I 

ances: V(al)  = V(b l )  = V(A)  = 2 ~ 2 1 . 8 5 4 4 / 8 ~ 2 4  = 0.22765, and 
a standard error of \/0.22765 = 0.47713. 

The tangent of the phase angle 0 can be computed without smoothing 
error from the coded numerators for a, and bl as tan 6' = (- 1448.035)/ 
(-634.103) = 2.2836. Since b, and a, are both positive after decoding, - 
0 = 6' and the phase angle is H = 1.1580 radians. Multiplying by 2 4 / 2 ~  
converts 8 from radians to 2 4 x  1.1580/6.2832 = 4.4234 hours, as meas- 

I I I I 
Q) w * (U 0 

ured from our first reading at midnight, which places the maximum poten- 
n- 

tial at 4:25 a.m. For the variance of 0, we have from Equation 17 and 
the variance of a,, V(6) = 0.22765/30.1275 = 0.007556. In terms of Figure 11. Confidence limits for the coefficients of the sine curve in Figure 5. 



hours the phase angle has a standard error of 24)<0.08693/6.2832 = 
0.3320. 

Each of these standard errors, with approximately 15.50 degrees of free- 
dom, is multiplied by Student's t = 2.1255 at P = 0.05 in computing the 
95% fiducial or confidence limits. For al, bl and A, the limits are 2.1255x 
0.47713 = 1.0141 above and below each statistic. Their relations are 
shown conveniently in Figure 11, where bl has been plotted on the ordinate 
against al on the abscissa, and the clock hours are indicated on the half 
circle. When considered independently, the two regression coefficients are 
consistent at odds of 19 in 20 with any value of the parameter falling be- 
tween the parallel horizontal or vertical lines bounding the point al,bl. 
The corresponding interval for the semi-amplitude, the length of the solid 
line from zero to the point al,bl, is defined by two parallel arcs with their 
centers at zero. The time of the maximum tree potential and its limits are 
marked by projectiohs to the time scale on the half circle. 

Composite tests 

In estimating a separate interval for al and for bl, which would include 
its parameter in all but five percent of trials, we would reject their true 
values, considered jointly, with a frequency of 100(1 - 0.95') = 9.75 
percent. A more comprehensive approach is provided in Section 64 of 
"The Design of Experiments" by R. A. Fisher. If al and bl are estimates 
of the true coefficients al and pl, the following inequality holds if the hy- 
pothesis is not to be contradicted at the percentage level selected for the 
variance ratio F: 

where F is the tabular value with nl = 2 and n, = the degrees of freedom 
in the relevant error variance s'. The denominator converts the numerator, 
a sum of squares with two degrees of freedom, from units of a single 
variate y to that of the regression coefficients a, and bl. Any pair of postu- 
lated regression coefficients al and p1 would be excluded if, in the quad- 
ratic form at the left, the differences were to exceed the limiting sum of 
squares on the right of the inequality. 

All acceptable values of the parameters a1 and P1 then fall within a circle 
centered at the point al,bl, which also defines the joint limits of the true 
amplitude and of the true phase angle. Its radius is the square root, of the -- 
right side of the above inequality or d2Fs2/+kf. For the limits of the 
phase angle, the radius of the circle for any given probability is multiplied 
by k/xA to convert it to the scale of k subdivisions in a complete cycle. 
The circle enclosing all acceptable parameter values at a selected level of 
significance may be drawn in a diagram not unlike Figure 11, and supple- 

mented, if desired, with a series of concentric circles, one for each addi- 
tional probability. 

For our example on tree potentials, we may obtain indirectly from the 
table of z in Fisher and Yates (1957) F = 3.6572 for the 5% point and 
F = 11.1471 for the 0.1% point at nl = 2 and n2 = 15.50. Substituting 
F = 3.6572 in Equation 18, any pair of postulated coefficients al and PI 
which does not violate the inequality 

would be admitted at the 5% level by our observations. This pair of values 
would fall within a circle with a radius of 1.665 1 = 1.2904. Substituting 
F for the 0.1% level, we would have a larger concentric circle with a 
radius of 2.2528. These two circles have been added to Figures 11. 

Finer Adjustments 

Correction for length o f  month 
In the annual cycles that we have been considering, the variate for each 

month has been given equal weight, although months differ in length by as 
much as 10%. The month containing the maximum or minimum variate 
has been estimated with an "average" month of 1461/48 = 30.4375 days, 
and the date within the selected month then based upon its length. In a 
paper of the Meteorological Research Committee (London), Craddock 
(1955) has provided an adjusted set of multipliers which allows for dif- 
ferences in the length of the month. With these multipliers, the coefficients 
for a two-term harmonic equation can be computed as readily as with the 
orthogonal cosines and sines in Table 1. For computing the corrected ex- 
pectations Y,, he provides a second table of the cosines and sines for each 
month. Since it is not orthogonal, his equation cannot be reduced immedi- 
ately from two terms to one term or extended to a third or higher term as 
the data require. For describing the annual course of the mean tempera- 
ture in the northern hemisphere, this limitation is negligible, since Crad- 
dock has found that a two-term Fourier series applies quite generally. 

As an indication of the size of the correction with relatively precise 
data, the monthly mean temperatures in Table 2 have been fitted by both 
methods. When computed from the totals T, by Equation 9, weighting each 
month equally and with exact values for 2uiZ and Svi5nstead of their ex- 
pectations, -;k = 6, we have the two-term harmonic series: 

starting with July as to. The monthly means for this 14-year period f and 
their expectations Y frorn the above equations are listed in Table 13. When 



TABLE 13. Comparisons of the observed monthly mean temperatures in New Haven 

for 14 years (y)  and their predicted values from two-term Fourier equations com- 

puted without weighting (Y),  with corrections for the length of each month ( Y , ) ,  

and with the weights w (Y , )  in Table 14. 

Observed Unweighted 7 Difference between means ----., 
Month v Y F-Y Y , -Y  Y ,  -Y 

Jul 72.4357 7 1.6494 .7863 - .007 1 .I765 

Aug 70.9286 7 1.2234 - ,2948 ,0017 .0077 

S ~ P  64.1357 64.9228 - .787 1 .0185 - .I965 

Oct 54.8714 54.3568 ,5146 .0067 p.2137 

Nov 43.4714. 42.7508 .7206 - .0265 - .0064 

Dec 32.6929 33.6869 - ,9940 - .0387 .2358 

Jan 29.9214 29.6697 .25 17 - ,0059 .2806 

Feb 3 1.457 1 31.3837 .0734 .0370 .0828 

Mar 37.9214 37.8963 .025 1 - .0752 -. 1702 

Jun 66.6786 66.5560 .I226 - ,0054 .I308 

Z(9-Y)' = 4.04575, Z(Y,-Y)' = 0.01085, S(Y,-Y)' = 0.36917 

corrected for differences in the length of the successive months but start- 
ing in January as to, we have with Craddock's weighted multipliers the 
two-term harmonic equation: 

The corrected predictions for each month Y, were then computed with 
Craddock's parallel table of cosines and sines and the constant a, = 
50.8623. 

The discrepancies (Y,.--Y) may be compared with the deviations 
(jr-Y) of the observed means from their simpler predictions Y. They 
are clearly of a different order of magnitude. Comparing their sums of 
squares, 1002 (Y,-Y)'/L (jr-Y)' = 0.27 percent. If this single example 
can be considered a reliable indicator, the discrepancy due to computing 
the Fourier regression coefficients as if months were equal in length 
should be negligible for most purposes. 

Variance homogeneity 

A second discrepancy between theory and observation may be traced 
to our assumption of equal variability at successive intervals through the 
cycle. Climatologists, for example, have long known that the variation in 
temperature from year to year in a given locality is greater in winter than 
in summer. To the extent that this inequality represents harmonic varia- 
tion, either in amplitude or in phase, it should be attributable to differences 
between the curves fitted separately to the data for each year. If this ex- 
planation were fully effective, the deviations of the observed monthly 
means from the fitted annual curves should be of the same magnitude in 
each month through the year. The problem is important in predicting the 
size of discrepancies from the fitted curve, and in determining the best 
estimate of the mean curve over the several replicates. 

When comparing the observed temperature in each interval with its 
expectation, approximations in curve fitting which are entirely edequate 
in an overall analysis may prove troublesome. Sums of the squared in- 
dividual deviations may differ from their counterparts in the analysis of 
variance in the third and even in the second significant figure due to 
apparently negligible rounding errors, especially if the average Fourier 
curve absorbs a very large proportion of the total sum of squares. As in 
the calculation of a reciprocal matrix, a good numerical check may de- 
pend upon carrying what seems initially to be an unreasonable number of 
decimal places. An example is our substitution of the true value ?,k for Tui2 
and TviL in the denominator of the Fourier coefficients, some of which are 
irrational numbers rounded to three decimal places. In a cycle of twelve 
subdivisions, this substitutes 5k = 6 for Hu12 = TvIL = 5.999824, = 
6 exactly and Hv2' = 5.999648, the sums of squares of the rounded coef- 
ficients. These latter values have been used in the following analysis. 

Because the second term in the Fourier series has varied significantly 
from year to year, it has been retained in a closer analysis of the monthly 
mean temperatures in New Haven in Table 2. As a first step, a separate 
two-term Fourier equation (Equation 9 )  has been computed from the 
12 monthly means (y) for each year. Each of these 14 equations was then 
solved 12 times, with the ui and vi for t = 0 to 11, leading to a table of 
predicted means, designated here as 2, which parallel the y's in Table 2. 
The averages of the 14 f's, one for each month, agreed exactly with the 
Y's in Table 13 computed independently with the two-term equation based 
upon the monthly totals of the y's, T+. Each 9 was then subtracted from 
its corresponding observed mean temperature y in Table 2, to obtain the 
deviations d = (y-9) in Appendix Table 7. These total zero for each 
year, and for each month their average is equal to the difference (F-Y) 
in Table 13. 



TABLE 14. Observed monthly variances (per degree of freedom) of New Haven 
mean temperatures for (y-Y)'  from the observed means j. and their unweighted 
predictions Y in Table 13, V(y) from the deviations of the y's in Table 2 from their 
column means 7, V(9) from the deviations ( 9 - Y ) ,  and V(d) from the deviations 
(y -9) in Appendix Table 7; expected standard deviations (SD) from the sine curve 
fitted to log-V(y); weights w = antilog(1 -log-V(d) for computing the weighted 

two-term Fourier curve Y ,  in Table 13. 

- Observed variance from SD from 
Month w 

(7-Y)" V ( Y )  V ( 9 )  V(d)  log-%^) 

Jul 

Aug 

S ~ P  

Oct 

Nov 

Dec 

Jan 

Feb 

Mar 

A P ~  

May 

Jun 

Mean 

Z (DF) 

Four variances were then determined for each month in units of the 
variance of a single monthly temperature y. The average of each series of 
variances over the 12 months agreed with its corresponding mean square 
from the analysis of variance, in several cases combining sums of squares 
that were reported initially in separate rows. The series of variances in 
Table 14 have the following composition: 

Those from (y-Y)Weasure the discrepancy of the observed 14-year 
average for each month from that computed with the two-term Fourier 
equation for all 14 years, each with 7/12 of a degree of freedom. These 
deviations would be absorbed completely by the remaining terms of the 
Fourier series if it were extended to the limit. 

The empirical variances V(y)  = S (y-j-)" 13 represent the variation 
of the 14 y's for each month in Table 2 about their observed or column 
mean );.. They show a marked seasonal trend. Each sum of squares 
P ( Y - ~ ) ~  with 13 degrees of freedom has been divided into two parts to 
obtain the next two series of variances. 

The variances V(9)  measure the variation of the predicted 9's about 
their mean, or that part of the variation in each month which is attributable 
to the 14 annual two-term Fourier curves. The average of the V(9)'s with 
65 degrees of freedom is equal to the mean of the sums of squares in rows 
1+5+6 of the analysis of variance (Table 6) .  These monthly variances, 
each with 65/12 = 5.4167 degrees of freedom, absorb part, at least, of 
the seasonal trend in the variance. 

The variances V(d) ,  averaging less than half of the V(+)'S, represent 
our nearest approach to a random error. They have been computed from 
the differences d for each month in Appendix Table 7 as V(d)  = 
128(d-d)?/91, each with 91/12 degrees of freedom. Their mean cor- 
responds in the analysis of variance to the mean square in row 7. Although 
much of the initial seasonal trend in the variance has been absorbed by the 
V(j.)'s, a substantial amount still persists. 

The pattern of the seasonal trend in the empirical variance V(y)  and 
in its two components in Table 14 may be defined periodically. Since the 
distribution of the log-variance is approximately normal (Bartlett, 1947), 
the following sine curves have been fitted to their logarithms and plotted 
in Fig. 12: 

In no case was the second Fourier term significant-. By Equation 4, the 
semi-amplitudes (A) of these curves are respectively 0.3324+0.0119, 
0.2668d~0.0174, and 0.33924 0.0158. From antilog (2A) for each series, 
the smallest expected variance in the mean summer temperature would be 
multiplied by a factor of 4.62 for y, 3.42 for 9, and 4.77 for d to abtain 
the largest winter variance. From the phase angle for each curve, the 
variances were maximal on January 3 1, 30 and 12 respectively. 

Weighted periodic curves 

The variance of the mean temperature differs sufficiently through the 
year from the equality implied in our initial model, that a weighted analy- 
sis might be expected to improve our estimate. Appropriate weights would 
be the reciprocals of the expected random variance, computed from the 
sine curve for log-V(d) as w = antilogarithm of 1 - log-V(d). These 
weights, in the last column of Table 14, vary from 1.1 to 5.4 and resemble 
the second of the three weighting systems suggested by Craddock ( 1955) 



The sum of squares from these differences is a considerably larger frac- 
tion (9.12%) of T(jr-Y)? than the 0.27 percent for the corresponding 
differences (Y,-Y). Although the weighted estimates Y ,  may be superior 
theoretically, their curve requires the solution of a reciprocal matrix and 
gives considerably more weight to the summer than to the winter tempera- 
tures. From a commonsense point of view, one may question whether the 
weighted estimates are as satisfactory climatologically as those from the 
unweighted Fourier equation, to which each month contributes equally. Is 
it wise to base the estimate of the annual curve so largely upon the sum- 
mer months? 

Normality o f  tenzperature deviations 

2 I o From td2 3 I 

Fi.yrrrr 12 .  Seasonal variation in the logarithm of the variances in Table 14, 
from [yS] = X(y--)"or the overall deviations in the monthly mean tem- 
peratures, and from its components [g?] = 2 ( 9  - y)? and [d2] 2 ( y  -g)', 
each fitted with a sine curve. 

0.2 

0 

for a similar purpose. The weighted two-term Fourier curve, computed by 
partial regression, has the equation: 

Y ,  ZI 50.7655 + 2 0 . 9 3 7 8 ~ ~  + 3.5002~1 + 0.1226~2 + 0.6028~2 

- 
0 0 

I I I I I I I I I I I I I 

When solved with the cosines and sines for each month, the weighted mean 
temperatures Y,. differ from the unweighted expected means Y as shown 
by the differences (Y,,.--Y) in the last column of Table 13. 

J A S O N D J F M A M J J A S 

Month 

In analyses of variance of periodic regressions we tacitly assume not 
only that the random deviations are equally variable at each t but also 
that their distribution is normal. Because of the small number of years 
in our climatological example, the normality of the deviations d has been 
tested graphically. The rankits* for a sample of 14 have been plotted in 
Figure 13 against the deviations for each month in Appendix Table 7 in 
rank order and each fitted with a straight line. Their slopes are less in 
winter than in summer, as would be expected from the seasonal change in 
the variance. If the distributions are normal, the plotted points should not 
curve systematically from the computed straight lines. To test whether the 
trends in Figure 13 cancel out, the deviations may be averaged for each 
position over the 12 months (i.e., the largest in each month, the next 
largest, etc). The rankits have been plotted against these averages in the 
left side of Figure 14 and fitted with a line passing through 0,O with a 

- - -- 

slope of 1,'s = 0.5920, where s = \/445.0708/12><13 = 1.6891. The 
close agreement with a straight line confirms our initial hypothesis that the 
variation about the two-term Fourier series for each year is here essentially 
normal. 

Two aspects of periodic regression need to be distinguished. The first is 
the harmonic analysis of periodic data to determine their underlying pat- 
tern and the magnitude and nature of the variation to which this pattern 
has been exposed. The second problem is that of predicting future re- 
sponses from our present data, as is con~monly the objective in climatology. 
Unless the constants in our fitted Fourier curve for each year were to define 
a trend which might be expected to continue, and climatologists are not 
agreed upon the existence of these trends, the prediction of future tem- 
peratures would have to be based upon the average curve for past years. 

* A rankit is the expected mean devialion for each rank in an ordered sample of  a given size from 
a normal populaition with a mean of zero and a standard deviation of  one (Fisher and Yates, 
1957, Table XX) .  



The error in our prediction would then involve not only the variation 
around the annual curves, which seems to be satisfactorily normal although 
not constant, but also the variation of the annual curves about their aver- 
age for the series of years. When these two sources of variation are com- 
bined, a convenient estimate of the standard deviation for each month in 

Jun 

0 0 - 
Devia t ions  y - 9  in Degrees Fahrenhe i t  

Figlire 13. Rankit test for agreement of the deviations in the monthly mean 
temperature with the normal distribution, from the differences d = (y-9) 
in Appendix Table 7. 

.. 
OF is SD = antilogarithm of 4-(log-V(y) ) in Table 14, from the equation 
of the upper sine curve in Figure 12. There is no assurance a priori, how- 
ever, that the composite variation will be distributed normally. 

For a graphic test of normality, the deviations (y-Y), which also 
include the differences (F-Y), have been computed from the y's in Table 
2 and the Y's in Table 13. These were ranked in order for each month 
and then averaged over the twelve months to obtain the rankit diagram in 
the right side of Figure 14. The plotted points have been fitted with a 
straight line passing through 0,O with a slope of l / s  = 1i2.679. Not only 
is the slope much less than that for the deviations about the annual fitted 
curves in the left side of the figure, but the points themselves describe a 
trend that is less certainly linear. 

Meon Deviotions from d =  ( y - 9 )  

Meon Deviotions from ( y - Y )  

Figure 14. Test for normality of the ranked deviations (y-9) in Figure 13 
average over the 12 months (left curve),  compared with a similar diagram of 
the average deviations (y-p) from the 14-year means for each month ( 9 ) .  

Despite their limited sensitivity with as few as 14 replicates, the numeri- 
cal measures of skewness (g,) and kurtosis (g..) have the advantage of 
separating these two types of non-normality (Fisher, 1954). Both statistics 
are normally distributed about zero with a standard error depending only 
upon the size of the sample. They have been computed for each month 
from the distribution of the observed temperatures y about their monthly 
means 7; neither approached significance in any one month or in com- 
posite x 2  tests over all 12 months. On the off chance that a seasonal trend 
might still be discernable, separate sine curves have been fitted to the 
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APPENDIX TABLE 3. Deaths from pneumonia for ten years starting September 1945, in terms of y = log(annua1 rate 

per 100,000) -0.800. (Metropolitan Life Insurance Co., 1945-55) 

Year 

1945-46 

1946-47 

1947-48 

1948-49 

1949-50 

1950-5 1 

1951-52 

1952-53 

1953-54 

1954-55 

Tt 

T, 

6.928 

6.200 

5.891 

5.093 

4.564 

4.355 

4.260 

4.312 

3.641 

3.805 
-- 

49.049 

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 

.409 .462 .SO1 .666 .869 .769 .749 .655 .486 .534 .464 .364 

.372 .484 .SO3 .569 .673 .603 .658 .727 .557 .412 .372 .270 

.335 .361 .439 .542 .699 .628 .676 .566 ,555 .446 .344 .300 

.335 .304 .367 .409 .588 ,555 ,548 .571 .SO1 .313 .270 .332 

.290 .316 .355 .422 .481 .448 .528 .552 ,474 .358 .200 .I40 

.I44 .264 .245 .396 .443 .467 .673 .565 .446 .276 .245 .I91 

.057 .237 .321 .430 .546 .443 .601 ,499 .428 .297 .233 .I68 

.I24 .225 .358 .382 .467 .631 .635 .479 .314 .297 .286 .I14 

.279 .I54 .200 .390 .393 .415 .446 .379 .279 .264 ,221 ,221 

.209 .237 .237 .334 .483 ,472 .455 .4 12 .249 .204 .268 .245 

2.554 3.044 3.526 4.540 5.642 5.431 5.969 5.405 4.289 3.401 2.903 2.345 

XI x. 

-9 6 

-7 2 

-5 -1 

-3 -3 

- 1  -4 

1 -4 

3 -3 

5 -1 

7 2 

9 6 

0 0 
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APPENDIX TARLE 4. Monthly log-incidence of poliomyelitis in the United States in cases per 1,000,000 population, from 

April 1942 to March 1957. (Serfling and Sherman, 1958) 

Year 
Total 

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 
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APPENDIX TABLE 7. Deviations (y-9 = d )  of the observed temperatures y in Table 2 from their expectations 9 as computed from two- 

term Fourier curves fitted separately to the temperatures for each year. 

- - -  - - -  
W e w w O w ~ < Q \ m * . W  
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- 
X 
- 
*. 

- - 
bo 

- - 
;. 
m 
0 

- - 

56 - 1.202 1.164 - 1.191 - .285 ,512 2.584 -4.998 2.803 
-- - 

Total 11.010 -4.130 - 11.018 7.206 10.092 - 13.917 3.524 1.030 
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43 

44 
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-- 

- .495 - .I17 .355 .543 .359 -2.949 2.962 .050 - 1.138 - 1.309 
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