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Foreword

Periodic phenomona in biology and climatology occur so widely that we
tend either to adapt to them as unavoidable nuisances or are overimpressed
by their day to day deviations. We can’t “see the forest for the trees.” If
the variable occurs around the clock or through the year, but with system-
atically unequal magnitudes, its underlying pattern can often be expressed
logically in relatively simple trigonometric terms. When this classic math-
ematical model is combined with an appropriate statistical analysis, we are
better able both to describe the periodic trend and to study deviations from
its pattern. For example we can separate weather into its orderly and its
random elements and by this means estimate the probability of occurrence
of critical temperatures. This approach is sufficiently novel, even to biolo-
gists and climatologists with a background in modern statistics, that the
technique is described here in some detail. Its applications are illustrated
with a wide range of biological examples and a more detailed study of a
typical climatological series.

Periodic Regression
in Biology and Climatology

C. L. Bliss

Most non-linear regressions in biology and many in climatology are handled
in one of two ways. The first is to convert the relation to a straight line by
the selection, on either theoretical or empirical grounds, of a suitable unit
for each variable, such as its reciprocal, logarithm, probit or logit. A sec-
ond approach is to fit a polynomial equation relating the dependent variable
y to successive functions of the independent variable x. In one familiar
form, these functions are the powers of x, leading to an equation of the
form
Y = a+ bix 4 box? 4+ bgx® + ... 4 bxk @))

Given k -} 1 values of our independent variable, the curve defined by this
equation will fit exactly the mean responses ¥, at each x, if extended to k
powers of x. In practice, we terminate the series as soon as the residual
variation of y, about the fitted curve is comparable with the variation of
the individual y’s about their respective means.

When the relation between x and y is periodic, our polynominal equation
will be more rational if we substitute trigonometric functions of x for their
powers, leading to harmonic or Fourier analysis, or “periodic regression”
as it is termed by Aitken (1939). The problem is further simplified when
the independent variable x is cyclical in character with a length fixed in-
dependently of the response. Typical variables include the hour of day in
the diurnal cycle, the month or week in the annual cycle, and the compass
direction in dispersion from a center. We are not concerned here with
cycles determined a posteriori, such as from fluctuations in the abundance
of animals or of plant pests, nor with ‘“cycles” which represent an age trend
in a single group of individuals, such as the monthly egg production from
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a single set of pullets through the year. We will further assume that each
of the equally-spaced subdivisions in the cycle is represented by a constant
number of observations. Within these restrictions, periodic regression par-
allels the more familiar curvilinear regression in which the orthogonal poly-
nomials represent the successive powers of x.

The Sine Curve

Many periodic biological functions can be fitted by the symmetrical sine
curve. We start with f values of our dependent variable y at each of k
observed times t (or other interval) within the cycle. The expected response
Y at each t may then be computed from the sine curve, expressed con-
veniently in the form

Y = a, + A cos(ct — 8) (2)

where a, = ¥ is the mean response over f complete periods or cycles. The
coefficient A is the semi-amplitude or one-half the range from the maxi-
mum to the minimum Y. The constant ¢ = 2x/k converts the numbered
units of time, t = 0, 1, 2, . . ., k-1, in a single cycle to angular measure in
radians. The statistic ¢ is the phase angle or the time in angular measure
of the maximum response Y. It shifts the origin for measuring time from
an arbitrary starting point t, to the time at which the response is a maxi-
mum. The angles could be measured equally in degrees instead of in
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Figure 1. The sine curve and its constants.
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radians, but radians have been selected here as the more conver}ient. One
complete cycle of 360° = 2= = 6.283185 radians, These various func-

tions of the sine curve are shown graphically in Figure 1.
For estimating its constants from the observed responses, we may re-

jte Equation 2 as

Y = a, 4 ajcos(ct) - bisin(ct) 3)

quation linear in the adjustable parameters a, and b,, where
A= Vai + by 4)
and tan § = b]/al (5)

The expected response Y for a given t can be computed direcqy fro_m
Equation 3 without conversion to the original form. The range in units
of y is equal to twice the semi-amplitude or 2A. To determine the correct

Erratum for Figure 2. For consistency with

the circle of radians, interchange contents of
inner circle in quadrants II and IV (upper left

and lower right).
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Cosines (u;) and sines (vi) for the harmonic analysis of cyclical data recorded in

k equally-spaced fractions per cycle and numbered consecutively from t = 0 tot = k—1_

k =17 ER=50d
t 1y Vi u Va | Uz Vi I | s Vi ‘ 0] V.
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6| —1 O 0 =1 oli"1 0
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9 0 -1 — 1 0O 0 1 1 0 Wi,Vs = us,ve (k=12)
10| .5 .ssal— 5 —866|—1 o0|—.5 866
it eReh. =5 5 —866 0 —1 —.5 —866 Fort = 07,815, 16-23:
Us,Va — U,,Vy (k:8)
For k = 4: u;,vi = u.,v: (k=8, t=0-3)
Fork = 6: ui,vi = w.,v: (k=12, t=0-5; u.,v. = u,,vi (k=12, t=0-5)
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quadrant for the phase angle 6, we first determine from a table of trigo-
nometric functions the angle in radians corresponding to tan 6" = |b,/a,|,
and from the signs of the coefficients a, and b, convert ¢ to the phase angle
¢ by Figure 2 (Brooks and Carruthers, 1953). Then on the time scale
measured from t,, the maximum response occurs at the time ké/2x. Since
the sine curve is symmetrical, the time for the minimum is one-half cycle
before or after the time of the maximum.

For any selected series of k equally-spaced intervals in each complete
cycle, the cosines and sines corresponding to the successive intervals of
t=20,1,2,...k-1 are listed in the columns for u, and v, in Table 1.
Each forms an orthogonal set of independent variates (within a negligible
rounding error) similar to the orthogonal polynomials for the successive
powers of x. With u; = cos(ct) and v; = sin(ct), Equation 3 may be
written as

Y = a, + ajy + bIV]_ (6)

where 2u; = 3v; = =(u,v;) = 0. The cosines and sines in Table 1 cover
the series encountered most commonly and include the higher harmonics
required for the Fourier analysis in the next section. Except for rounding
errors, which usually may be neglected, the denominator of a, and
of b; is the same for all evenly-spaced series of the same length k, or
2u,? = 3v;® = lk. With this short-cut, the regression coefficients for a
single measure at each time t (f = 1) are readily computed as

[wy]/$k
[viy]/$k

a; = S(wy)/Su? =
@)

and by = 3(vyy)/3vy® =

With f replicated y’s at each t, totalling T, the regression coefficients are
computed directly from the T¢’s as

a; = 3(u,Ty)/f2uy® =
b. = S(v;T)/f3v,2 = [viTy]/4fk

[, Te] /3fk
(3)

and

As an example of simple periodic regression, we may fit a sine curve
to the monthly mean temperatures in New Haven (Table 2), for the 14
years from July 1943, when the Weather Bureau station was moved to its
present location at the municipal airport, through June 1957. The totals Tt
in the last row of Table 2 were multiplied by the variates u; and v; in
Table 1 for k = 12 to obtain by Equation 8 the regression coefficients
a; = 1763.0944/84 = 20.9892 and b; = 292.7604/84 = 3.4852. With
these coefficients and the mean, a, = 8528.6/168 = 50.7655, the expected
Y for each month has been computed by Equation 6 and the corresponding
variates u; and v, in Table 1. The Y’s have been plotted as the curve in
Figure 3, together with the observed monthly means . In this as in most
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other figures the first few months have been repeated at the end, so as to
emphasize the cyclic character of the relation. Inspection indicates a good
fit; how good we will test more fully in a later section.

From these records the seasonal range or amplitude in the mean tem-
peljature at New Haven is 2A — 21/20.9892 + 3.48522 — 42.553°F as
estimated from the sine curve by Equation 4. To determine the time of the
maximum (Equation 5), we may compute tan 6° — 3.4852/20.9892 —
0.16605 and from a trigonometric table, interpolate the angle ¢ corres-
ponding to this tangent. With both a, and b, positive, ¢ falls in the first
quadrant (Figure 2), so that § = ¢ — 0.16455 radians and the maximum
temperature is reached at 12 6/27 = 1.9746/6.2832 — 0.3143 months
from our starting point (t,) in the annual cycle. Since t, corresponds to mid-
July, this places the maximum temperature in New Haven approxi-
mately at July 25 over these 14 years and the minimum six months later
on January 24. These estimates, of course, are subject to sampling errors
which will be considered in a later section. Apart from their intrinsic in-
terest, they permit rewriting the prediction equation in Equation 6 in the
form of Equation 2, if this is preferred, as

Y = 50.765° 4 21.2766 cos(0.5236t — 0.16455)

where t is the number of the month (Table 1).
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Figure 3. Monthly mean temperatures from Table 2 fitted with a sine curve.

Monthly mean temperatures in °F. at the Weather Bureau Station in New Haven, Conn.,

TABLE 2.

from July 1943 through June 1957.
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J‘ The Fourier Series

The plotted means may not define as symmetrical a relation as the Sine
curve. By Fourier analysis we can add the higher harmonics, corresponding
tp 2, 3, 4 or more complete cycles in the basic interval covered by one
cycle of the sine curve. If we add enough terms the computed curve wij
A}t’ any observed series exactly, but the equation then has little meaning
either biologically or climatologically. Our objective is to add no more
térms than are needed to reduce the variance from the scatter of ¥+’s about
the fitted line to the same magnitude as the residual error. We may stop
well short of this if the scatter seems essentially random even though its
variance is significantly larger than the residual variation.
| The sine curve in Equation 6 is extended with additional terms to

Y —a, + ajuy 5 byvy + asus -+ buve 4+ azug - bava - . . . (9)

|
where u» = cos(2ct), v; =sin(2ct), w3 = cos(3ct), v; — sin(3ct), etc. and
each pair of coefficients a; and b, is computed with Equations 7 or 8, re-
pTacing wandv, bywandv,fori=1,2,3... successively, The u;’s and
vi's convert the scale of t to orthogonal units in which S(wvy) = () —
2(vivs) = O where i 5= j. There is the additional advantage that for any
gi\vcn k, 3u® = 3v;* = 1 k for all values of i, except the last term where
klis even and then Su;®> = k. The values of u; and v, for the first terms of
the Fourier series are given in Table 1 for k — 4, 6,7, 8, 12 and 24 sub-
divisions per cycle.

‘A seasonal trend which is not a simple sine curve occurs in the iodine
value of butterfat at five stations in central Alberta, Canada, as reported
by Wood (1956). Each entry in Appendix Table 1 represents duplicate
analyses of the weekly samples of butter in each month for two years be-
ginning in April 1952, or an average of 17.3 determinations. Both the
annual total for each station and the month with the peak reading tended
to|shift in going south from Edmonton to Calgary. According to Wood.
the monthly readings in the two years, which have been averaged, did not
dif"fer significantly. Although a shift in the phase angle from one location
to another accounts for part of the complexity of the average curve, the
iodine values for each location could not be fitted adequately with a
separate sine curve.

From the sums of products of T, with the cosines (u;) and sines (v;) in
Table 1 for the first three harmonics, the seasonal trend of the means in
the upper part of Figure 4 is reproduced quite faithfully by the equation:

|

Y = 36.955 + 0.4091u; 4+ 1.7318v, 0.0700u., 0.5542v,

0.2233u; + 0.7467v,

l |
PERIODIC REGRESSION 1

the overall mean, a, = 36.955, ph?s the deviations

nic in each month, as the reader may verify from the last
for MRS harmOA endix Table 1. The Fourier terms have been plotted
three rows of h pll()>wer part of Figure 4 as deviations from the mean a,
eit that they define successively 1, 2, and 3 complete cycles

This curve i merely

separately in t
wherc it is evid

-thi car. . . . . i
) lthmﬂt]hepyrescnt case the biological implications of the successive har
[n the

i e by no means clear. Todine values are.indicative 'of the 1.1nsatu-
Ot c);d content of butter and are expected to be high c?urmg the
F ac cason in May. As noted by the author, the peak in August
iy feedmg i most pronounced in the North and decreasing south\.vard,
e Sept:n::cfe& Although the biological information gained .in ﬁtt_mg a
\l:izr‘i]:r € Sgries is here questionable, the exan}ple has served its t}))ruf?t?rg
purpose of demonstrating that. an apparently irregular curve can be ntte
by harmonic analysis with a limited number of constants.
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“igure 4. Mean monthly jodine values for butterfat from Appendix Table 1.
Che sum of the deviations in the lower three curves, added to the mean (),
fields the three-term Fourier curve in the upper diagram.
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Analysis of Variance

The analysis of variance has the same function in periodic regression
as in many other regression problems. The variation in y about the fitted
curve is assumed to be normally distributed, equally variable over the
length of the cycle, and with deviations independent of each other. The
selection of a suitable transform may aid materially in achieving these
objectives, as we shall see in a later section. A more troublesome problem
is the potential dependence between successive observations through a
cycle. Despite the formal analogy of a cross-classification to randomized
blocks, the responses in each row represent an ordered sequence rather
than an arrangement upon which treatments have been superimposed at
random.

One approach is to fit a Fourier series to the column means and com-
pute a serial correlation coefficient from the successive residuals, as de-
scribed by Anderson and Anderson (1950). In a time sequence, such as
of weather records or of attack rates by a contagious disease, these cor-
relations are often significant. An alternative approach, more consonant
with the analysis of variance, is to fit a separate Fourier series with a
limited number of terms to each replicate. The interaction of rows by
columns, or of replicates by periods, is then subdivid 5 many parts
as may be needed to remove the systematic differen en the trend
in each series and the mean trend. In this way we may scparate the com-
posite interaction into cyclic trends and residual error. The same argument
holds, of course, whether replicates represent successive cycles, such as the
years in Table 2, or sampling locations as in Appendix Table 1. The more
nearly these separate curves define the periodic trend in each replicate
with the fewest terms, the more nearly will the residual error provide an
unbiassed estimate of the random error.

With an orthogonal design, the calculation is very similar to that for
randomized blocks. The sum of squares between the f totals T, for repli-
cates, representing successive complete cycles or different locations, cor-
responds to variation in the statistic a, of our separately fitted series. When
these totals suggest a trend, we may wish to isolate its linear and quadratic
terms to test its form and significance. The sum of squares between the k
totals Ty for each interval within the cycle may be subdivided progressively,
beginning with a; and b; for the first harmonic with two degrees of free-
dom, and following with the second and higher harmonics from the Fourier
series, until the scatter about the fitted curve contains no element which
we can isolate with profit.

The remaining sum of squares, the interaction of replicates by measured
intervals within the cycle, includes not only the random error but also the
variation from replicate to replicate of each harmonic in the Fourier series,
in so far as these represent systematic rather than random deviations. The
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differences between cycles in the first harmonic, with 2(f-1) degrees of
freedom, almost certainly should be isolated and tested. In deciding how
much farther to partition the interaction, our most useful guide, when
available, is the theoretical or expected variance, with which we can com-
pare each mean square. In its absence, we may subdivide the interaction
into as many additional terms of the Fourier as have proved useful in
fitting the means of all replicates. This rule is rough at best, since a sig-
nificant higher term may repeat itself so consistently in all replicates that
it will not remove a systematic component from the interaction. Alter-
natively, systematic trends in the individual cycles, corresponding to the
second or higher harmonic, may cancel one another when averaged over
all replicates.

Mathematical model

These relations may be reduced to more concrete terms by an explicit
mathematical model. A single variate occurring in the i" year (or replicate;
and the j*™ month (or interval) is potentially the sum of a number of ele-
ments. An element with a subscript i has the same value through a given
year but may vary from year to year; an element with a subscript j has a
fixed value for a given month but may vary from month to month; an
element with both subscripts is specific for a given month and year. With
this notation each individual variate y msist of the following terms

Vi = (n 4+ 1) 4 (extaDuy - )V 4 (az+a271)uy
- (Bo-+-bs')va; +— y +€4 (10)

where the Latin and Greek terms in parentheses correspond to the ex-
pectations for the successive statistics of the two-term Fourier curve in
Equation 9 for the year i, and (t; 4 ¢;;) represents the difference between
the observed value y;; and its expectations Y;;. Greek letters stand for the
expected values of the same curve fitted to the monthly means over all
years or replicates, t; is the difference between the observed and expected
mean for a given month (or other interval), and e;; is the inescapable nor-
mal random component.

Our null hypothesis is that each intermediate element in Equation 1
(except the cosines and sines) is zero, which, if true, would then reduc
to yi; = p -+ e;. If a single two-term Fourier equation, estimated from th
total T, for each month (or other interval), were to describe the phenomen
adequately, our model would simplify to

Vij = s+ aglyj 4 Bavaj + axllyy - BaVyy + €5

m a true value of zero. A
»ut this curve would require

all other elements being indlistinguis!
significant variation of the monthly n
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the term t;, which might represent a third or higher term in the Fourier
series or discrepancies common to each replicate year from some other
source, All remaining elements, with subscripts i, measure the differences
from year to year (or replicate to replicate) in successive terms of the
Fourier equation.

¢
= &
Calculation 5 2
When the elements in Equation 10 are rearranged in the order in which | E z
their variation is isolated in successive rows of the analysis of variance, ' - r"’ I
we have 5 & 4 @ I+
Vis = i+ T + (auy+iviy) + (astog+Bova;) + z KIIIQ _L l Z
Row 9 1 2 3 4 (11 2 =5 =
| S A -~ -~ w1
+ (@1iw4b1"iviy) 4 (a2'iuz4-b2iv2y) + ey .}j 4 280 5 = 2
5 6 7 E 5{_ (l_, Ay % ||E § :
Separate sums of squares are attributable to the unique combinations of s k8 e srees T LL i
these elements enclosed by parentheses in Equation 11, the number beneath ' CO el s L R L e
each term identifying the row in the analysis of variance. Their practical é 7 RS T s R R
calculation is outlined in the workform of Table 3, which may be reduced o AT
to that for a sine curve by omitting rows 3 and 6, or extended with addi- : -
tional Fourier terms. Square brackets [ | designate the sum of the iz 5 i TR L,
squares or products of the factors they enclose measured from their re- e e PR R s J{ 5
spective means as the origin, i.e. [y*] = S(y—¥v)? = 3y* — 32y/fk, or cor- s GLECi |
respondingly [wy] = S{(u;—a,) (y—¥) } = 3(wy) since Zu; = 0. Its = =
other symbols are defined above, in the workform or in Equations 7 and 8. 5 & R
For each sum of products the identity, 3[u,y] — [u;T;], provides a useful o
check on the arithmetic, which holds similarly for the products with vy, % w %
Uy, Vs, etc. The sum of squares in each row, designated as S; to Syj, is _é SO o s 5 = G
divided by its degrees of freedom (DF) to obtain the corresponding mean - 8 33 ¢ t Ji = e| . B
square (MS). . 2 PG e =ik SN S
When a given pair of coefficients, a; and b;, varies significantly between ' 3 £ ;"' 8 & S e “i X X
replicate curves, its harmonic may differ in amplitude, in phase, or in both. 3 = g % 6 _: -‘_—’ °—_‘ “:‘ % -“;’ é
Since amplitude and phase angle are computed from non-linear combina- 8 : 33 2 =2 2l Bl &2
tions of a, and b;, their relative contributions to the sum of squares in : 2E S e g
row 5 or 6 cannot be separated orthogonally. However, if we disregard Sl S T 4 STt e, (1
phase, we can estimate the total variation in anjplitude from replicate to E 5 g b X o R NPT
replicate in terms of a single y* from JkS(A—A)? where A is the semi- = = -

amplitude of a given harmonic in a single replicate (Equation 7) and A

that for the same harmonic in the average curve (Equation 8). For the ‘
first harmonic this reduces algebraically to the sum of squares defined in ‘
row 10 of Table 3. The difference between this sum of squares and that ‘

b,) is used here and subsequently to designate the sum of the effects of

b:) or (a: +
the harmonic coefficients, not the sum of the coefficients directly.

* The notation (a,
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in row 5, S;—S;0 = S;;, we may attribute to differences in phase. A sig-
nificant variation in the second harmonic in row 6 can be subdivided
similarly,

TABLE 4. Variance components for the expectations of the mean squares (MS) in
Table 4, where each MS = S,/DF.

Row Expected mean square

1 gs -+ ko’

2 a* + ik(a,*+b,*), + fo.* + kf(a2+B:2)
3 o + 3k(a,’+b.*). + for + ikf(a.*+B.%)

4 a* - fo.*

5 - + ik(a2+b.2)

6 o> + *k(a’+b.")-

7 s

Tests of significance

From our model in Equation 11, the mean square in each row of the
analysis of variance contains potentially the variance components in Table
4, on the assumption that each source of variation about the average
Fourier curve can be considered a random variable. Replicates, for ex-
ample, are assumed to be equivalent to a random sample of complete
cycles, and the variation of replicates by each term in the Fourier series
to represent similarly a random selection. We will further assume that any
correlation between successive observations within a replicate is removed
in the interaction of replicates by a; and b, and by a, and b, in rows 5
and 6 of Table 3, where the effect of each pair of coefficients is symbolized
as “(a;+by)”, “(ax+by)”, ete.

Under these assumptions, the variance components are essentially the
same as those for other replicated regressions, whether linear, curvilinear
or harmonic. The components for regression from a; and b; in Equation 11
are designated as a.* and b.? in Table 4 and converted to units of y* by the
factor Jk = Xu;* = Sv;2. The variance components ¢ with subscripts for
replicates (r) and time (t) are already in units of y2, as is the random
variance o* which recurs in each MS and may be an undivided composite.

The error variance for a test of significance or a measure of precision
depends upon which of the relevant components in Table 4 differ effective-
ly from zero. It may be a single mean square or a linear combination of
variances, and will frequently be designated as s>. When testing the null
hypothesis that the additional component is zero in the mean square V; in

e
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rowi = 1, 4, 5 or 6, the appropriate s* is V;. The significance of each
observed F — V,/V: is determined by reference to a table of F or the
variance ratio, such as that given by Fisher and Yates (1957) or by Pearson
and Hartley (1954). If the mean square for scatter about the fitted average
curve in row 4, for example, is significantly larger than that for the residual
variation in row 7, we would conclude that the deviations about the repli-
cate curves have a common element.

An F test of the Greek coefficients in rows 2 and 3 is more involved. If
the scatter in row 4 or the interaction in row 5 or 6 should prove less
than or negligibly larger than the random error, its component would drop
out of the sum in row 2 or 3 of Table 4, and the remaining components
would determine which single mean square is the appropriate error. When
both the scatter in row 4 and the interaction of the first or second harmonic
with replicates are significant, the appropriate error is a linear combina-
tion of the mean squares (V,) in three different rows (Anderson and Ban-
croft, 1952). For the effect of (a; - b,), the error is s* = V4 + V; — V;
with approximately n’ degrees of freedom, estimated as

Va4 Vs Vi)?

= : (12)
(Vi/ny) + (V52/n5) + (Vi3/n3)

For an approximate test of significance, we refer

B =N V- V=) (13)

to a table of the variance ratio (F) with n; = 2 and n. = n’ degrees of
freedom. Similarly, for the second term in the Fourier series the error is
s? = V4 + V4 — V;, with F” and n’ determined by Equations 12 and 13,
replacing subscript 5 by subscript 6.

Examples

The analysis of variance in Table 5 has been computed from the monthly
mean temperatures at New Haven in Table 2. An inspection of the yearly
or replicate totals reveals no obvious trend, except possibly for a series of
warmer years in the middle of this 14-year period. Since a parabola fitted
to the T.’s (not shown here) did not approach significance, we will con-
sider the differences in T, a random variable. Their mean square V, ex-
ceeds the interaction V; significantly (P < 0.02). The sine curve for the
monthly totals (T;) accounts for 96.9% of the total sum of squares and
is obviously highly significant. Although the mean square for the second
term in the Fourier series, (as - bs), is larger than the scatter around the
two-term Fourier curve, its error depends upon the significance of the
mean squares in rows 4 and 6.
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TABLE 5. Analysis of variance of the monthly mean temperatures

at New Haven, Conn., in Table 2.
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TasLE 6. Analysis of variance of the average monthly iodine values

in Appendix Table 1.

Row Term | DF | ss MS | F
1 | Between years 1| 138.95 10.689 | 2.19
2 Months, effect of (a+bi) | 2 3802632* | 19013160 | 1695
30| 7 effectof (mtb) | 2 | 40.07 20.035 2.20
4 »  scatter | 7] 57.76* 8252 | 169
5 Years X Month (a,+b,) 26 | 291.71 11.220 2.29
6 "X " (aFbe) ‘ 26 | 237.17 9.122 1.87
7 |7 X7 scatter |91 | 445.08 | 4.891 |‘

8 | Total | 167 ‘ 39237.06 |

_9 Correction, Cp, - i *_1 | 432958.44 |

10 | Year X Amplitude, ‘ 13 | 165.55 / 12.735 2.60
11 Year X Phase, 13 126.16 9.705 1.98
2| Year X Amplitude, L3 | 13208 ‘ 10.158 | 2.08
13 Year X Phase. |13 105.12 8.086 | 1.65
* When recomputed with Zu,® = Zv,®2 = 5.999824 instead of their expectations,

1k = 6, these SS were corrected to 38027.43 and 56.64 respectively, no others
differing by more than 0.01.

When compared with the interaction V-, both the first and second
Fourier terms varied significantly from year to year, but the scatter about
the average curve in row 4 fell within the acceptable range. This last result
is in line with Craddock’s finding (1955) that temperature records in the
northern hemisphere agree quite generally with a two-term Fourier series.
Both the scatter in row 4 and its interaction with years in row 7 might
have been subdivided by adding a third term to the Fourier series, as in
fact was done, but without a significant reduction in the remaining mean
squares. Since Vy is not significant, we may retain our null hypothesis
that its variance component o2 is zero, and compare the mean squares
from the first and second terms in the Fourier curve for the 14-year
average with their respective interactions by years. For (as -+ b,), we have
F — 20.305/9.122 = 2.20, which is not significant.

To separate the differences in amplitude and in phase, the variations of
the Fourier curve from year to year in rows 5 and 6 have been subdivided
in the last four rows of Table 5. These indicate that for both the first and
second harmonic, the amplitude or annual range differed somewhat more
from year to year than the phase or date of the maximum, The variation
in the mean monthly temperature will be considered later in more detail.

Row Term DF| ss | Ms F F
1 Place 4 | 658543 | 16.4636 | 141.20
2 | Months, (ai+b.) 2 | 94.9890 | 47.4945 18.56%
3 & (a:+b.) 2 | 93625 | 4.6812 6.65%+
3 & (a: +by) 2 | 182217 | 9.1108 | 17.74
4 ” scatter 5 2.5673 S135 4.40

Place X Month (a.+b,) 8 | 17.2916 2.1614 18.54

» X ?  (a.+b) | 8 | 24569 | 3071 | 263

7 "X " scatter 28 | 32652 | .1166
10 | Place X Amplitude. | 4 | 5.0955 | 12739 [ 10.93
11 » X Phase: \ 4 | 12.1961 | 3.0490 | 26.15
Fst=12.5583 n"'= 10.27: ++5* = 0.7040, n* = 7.62.

From the analysis in Table 6 of the iodine values in Appendix Table 1,
the three-term Fourier curve accounts for 97.9% of the variation between
the monthly totals; there would be little point in adding more terms to the
series. The five creameries or replicates differed very significantly in their
means and in the first harmonic (a; 4+ b;). When the latter (row 5) was
subdivided between amplitude and phase (rows 10 and 11), differences in
phase proved the more important. The interaction of place with the third
and higher terms proved so nearly equal that they have been pooled in
estimating the random error in row 7. From its variance components, the
error for testing (a;-+b;) in row 3’ is the mean square in row 4. Since all
random components in the mean squares for (a;+b;) and (a»4b.) are
significant, each is tested in terms of F’. For the first term, F* = 47.4945/
(0.5135 + 2.1614 — 0.1166) = 18.56 and the divisor (2.5583) has ap-
proximately n” — 2.5583°/(0.51352/5 4 2.1614%/8 + 0.1166%/28) =
10.27 degrees of freedom by Equation 10, and for the second term F* =
6.65 with n” = 7.62. All three terms of the curve plotted in Figure 4 are
clearly significant.

A systematic trend from replicate to replicate may be illustrated by the
progressive change in the standing electrical potential (Burr, 1945) of an
elm tree, which varies diurnally. The hourly potentials, as read from the
daily record for eight three-day periods from August 1 to 25, 1953, have
been coded in Appendix Table 2 for ease of analysis. The hourly means
(in code) have been fitted with the two-term Fourier curve (Equation 9):

Y — 49.964 — 6.605u, — 15.084v; + 1.357us 4 1.146v,
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Decoded, the estimated average potential for each hour is
Y’ = —66.654 + 2.202u; + 5.028v; — 0.452u, — 0.382v.,

which has been plotted as the solid curve of Figure 5. Except for a slight
flattening at the upper and lower limits, as if limited by maximal and
minimal potentials, the fit seems very good; how good we can determine
from the analysis of variance in Table 7.

Electrical Potential

-74 |-

am. p.m. a.m.

Figure 5. Mean hourly potentials in an elm tree fitted with a two-term
Fourier curve (solid line) and with a sine curve (broken line), from Ap-
pendix Table 2.

Over this period of 25 days, the average potentials, all initially negative,
decreased progressively, as indicated by the rise in T, in Appendix Table 2.
In consequence, the variation between replicates has been subdivided into
a highly significant linear trend and the scatter about this trend, in rows
1 and 1’, with the latter still much greater than the random error in row 7.
This trend was succeeded toward the end of the month by a drastic change
in the diurnal pattern, possibly in response to the prolonged dry spell in
that August.

Since the mean squares for both the first and second Fourier terms are
so much larger than the remaining variation between the hourly means
(row 4), the two-term Fourier curve seems to fit the plotted points in
Figure 5 better than the simpler dotted sine curve. However, the interaction
of replicates by the first and by the second term both exceed the residual
variation so considerably that the significance of the mean squares in rows
2 and 3 must be tested by F’. By this criterion, the first term or sine curve
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TABLE 7. Analysis of variance of the tree potentials for the eight 3-day periods

in Appendix Table 2.

Row Variance due to ‘ DF | SS ‘I MS F, ¥
i Linear trend on periods 1 20259.80 20259.796 21.37
1 Scatter about trend 6 5687.82 947971 | 176.33
2 Hours, (a.-+b:) 2 26030.12 13015.062 66.171
3 ? (a:+b:) 2 302.80 ‘ 151.398 1.78%1
4 »  scatter 19 297.20 | 15.642 291
5 Period X Hour (al-i—b;)I 14 2609.93 186.424 ! 34.68
6 ? X 7 (az+b:)| 14 1048.06 | 74.861 13.92
7 » X ”  scatter 133 715.01 5.376
1 |
8 | Total 191 56950.74
10 Period X Amplitude, 7 1822.73 260.390 | 48.44
11 ” X Phase, 7 787.20 112.457 I 20.92
T8 = 196.690, n* = 15.50; TEs = 85 127 n? ' =017.53.

is highly significant but not the second term (F’ = 1.78, P = 0.20). De-
spite its apparently better fit, the more complex curve offers no real ad-
vantage in describing the average diurnal variation in tree potential. As
judged from Table 7, in studying the relation between the daily tree poten-
tials and environmental factors, such as temperature, cloudiness, soil
moisture and humidity, the hourly readings for each day might well be
replaced by the first five constants in a Fourier series (a,, a;, by, a; and bz)
and these used as the dependent variables in a comprehensive analysis.

Transformations of the Variate

In meeting the assumptions of the analysis of variance, the adoption of a
suitable unit for the response is often critical. An unsuitable original meas-
urement or count can often be transformed to a unit which is either addi-
tive or has a variance independent of the mean. In fulfilling one require-
ment we frequently meet or approximate the other assumptions in the
analysis of variance, and in some cases acquire an expected variance, with
which the observed variation can be compared.

Sometimes the transformation can be based upon past experience with
the variate or upon a biological relation. Thus, if we expect our measure-
ment to change proportionately or percentagewise with time, such as the in-
cidence of a contagious disease, the appropriate unit would be the loga-
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rithm of the incidence. If the initial variable is the number of occurrences
or individuals in each unit of time, its distribution, apart from the periodic
effect, may well be Poisson. The expected variance of each Poisson count
is its unknown population mean, but the appropriate transform, the square
root of each count, has a constant variance of 0.25. Our data may be
binomial percentages which can be assumed to measure indirectly an un-
derlying threshold response, some function of which is normally distributed
in the biological population. The additive transform is then the probit, or
the unit, usually the logarithm, to which the probit is linearly related.

Log-transforms

Since the logarithms of many biological measurements are ‘normally
distributed, the logarithmic transformation should be of equal value in
periodic regressions, such as of contagious diseases in animals and plants.
An example from man is the seasonal variation in the death rate from
pneumonia, as recorded in the monthly reports of the Metropolitan Life
Insurance Company (1945-1955). The month of September, when deaths
are near a minimum, has been selected here as the starting time (t,) for
each annual cycle in Appendix Table 3, where each monthly rate per
100,000 has been transformed to its logarithm, a unit which stabilizes the
variance through the year. The log-death rates for September 1945 through
D‘ecember 1949, when deaths were classified by the 5th Revision of the
International List of Causes of Death, have been adjusted here to conform
with the 6th Revision used subsequently by subtracting from each earlier

Log- Death Rate per 100,000

Death — Rate per 100,000

Month

Figure 6. Mean monthly log-death rates from pneumonia and fitted sine
curve, from Appendix Table 3.

—_—
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log-death rate the mean difference (0.235) during the twelve months of
1950 when both criteria were reported.

The sine curve, Y = 1.2087 — 0.1647u; + 0.0535v;, has been com-
puted with Equation 8 from the monthly totals T, and plotted in Figure 6.
By Equation 4 the seasonal range in the mean log-death rate is more than
two-fold, 2A = 0.3464 — log(2.220). By Equation 5 and Figure 2, its
maximum at tan ¢ = 0.32507 and phase angle § — 2.8273 radians, cor-
responds to 5.400 months from the starting point of each annual cycle in
mid-September. This places the maximum death rate at approximately
February 25 and the minimum six months later.

TaBLE 8. Analysis of variance of the log-death rates from pneumonia
in Appendix Table 3.

Row | Term | DF | ss | Ms | FF
1 | Years, trend on x. 1 | 80964 | 80964 | 246.09
1’ ” trend on X: 1 .06494 06494 . 19.74
" | scatter 7 02303 | 00329 1.52
2 | Months, (a,+b.) 2 | 179995 | 89998 107.83+
3 » (a.+b) 2 00445 | 00223 0.25t%
4 » scatter 7 .03650 | .00521 2.40
5 | Years X Month (ai+b)) | 18 09540 | .00530 2.44
6 X% (atb) 18 10607 | .00589 2.72
7 "X " scatter 63 13662 | .00217

10 | Year X A 9 | 06990 | 00777 | 3.8
11 | ™ X Phase L9 02550 | .00283 131
12 " X A 9 07347 | .00816 l 3.76
13 " X Phase. 9 | 03260 | .00362 1.67
Fs* = 0.008346, n° = 12.6;  Tis' = 0008939, i’ = 13.6.

The progressive decrease in the yearly totals (T,) (Appendix Table 3)
has been fitted with the linear and quadratic orthogonal polynominals, x;
and X., for a series of 10 (Fisher and Yates, 1957). This parabola accounts
effectively (97.4%) for the trend between years, as judged from rows
1 to 17 of the analysis of variance (Table 8). A similar proportion (97.8%)
of the sum of squares between the monthly totals (T,) is absorbed by the
harmonic coefficients a; and bs. Since the mean square for the second
harmonic is less than that for the remaining scatter, little would be gained
by adding more terms.
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The variation from year to year in both of the first two harmonics ex-
ceeds the remaining interaction with years significantly, despite the disap-
pearance of the 2nd harmonic from the average curve. When isolated from
the residual sum of squares in row 7, the mean squares for the higher
terms decreased progressively, but in the absence of an expected error
variance with which to compare them, they have been pooled in the
analysis. As judged from the last four rows in Table 8, the first two
harmonics were considerably more stable in phase from year to year than
in amplitude.
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Figure 7. Mean monthly log-incidence of poliomyelitis in the United States
with two-term Fourier curve, from Appendix Table 4.

A similar analysis of another contagious disease with a marked seasonal
incidence, poliomyelitis, reveals a different pattern. The U.S. monthly
incidences per million have been changed to logarithms in Appendix
Table 4 (Serfling and Sherman, 1953, 1958) and analyzed in Table 9.
Although a parabola accounts for much of the overall difference between
years (T,), the scatter about this trend (row 1) is here far larger than
that about the annual curves (row 7). Instead of a simple sine curve, the
monthly totals (T) define the two-term Fourier curve in Figure 7, with
both terms significant and the equation

Y = 18517 0.6397u; + 0.4161v; — 0.0252u. 0.0861v.

This increases in 24 weeks from a minimum, approximately on March 23,
to a peak 35 times as great on September 7, and then returns in the fol-
lowing 28 weeks to its minimum. Here the variation in both terms from

year to year is about equally distributed between amplitude and phase.
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TABLE 9. Analysis of variance of seasonal incidence of poliomyelitis
in Appendix Table 4.

Row Term | DF \ s | Ms | F.F
1 | Years, linear trend [ 1 | 349183 3.49183 | 10.34
G »  quadratic curv. 1| 2.86902 286902 |  8.49
17 " scatter 12 4.05418 33785 | 9445
2 Months, (a:+b,) | 2 52.40486 26.20243 377.83%
3 » (as+b.) [ 2 ' 72484 36242 11.55%%
4 " scatter 7 | 14494 02071 5.79
s Years X Month (a:+b:) | 28 1.46223 05222 14.60
6 7 X " (a:s+b.) | 28 39758 | 01420 3.97
7 "X " scatter 98 35051 | .00358

8 | Total 179 | ess9990 | |
10 Years X Amplitude, 14 71986 .05142 14.37
11 ” X Phase 14 74237 05303 14.82
12 » X Amplitude: 14 .19934 01424 3.98
13 " X Phase. | 14 .19824 01416 3.96
ts = 006935, 0’ = 3029; +ts* = 003137, n* = 1435,

Square root transform

The advantages of a theoretical error term are evident in the square root
transformation for a Poisson variate. Data on the number of normal human
births per hour have been assembled by King (1956) from the records of
five hospitals, the two with the fewest births having been combined in
Appendix Table 5 into a single series (A). If the number of births per
hour within each series had varied entirely at random, we would expect
its 24 values to follow the Poisson distribution and its variance to equal
its mean. Because of differences in the size of the four series and potentially
in the hour of birth, the variance has been stabilized by transforming
each number of births, ranging from 153 to 508, to its square root (Bart-
lett, 1936). The hourly means have been plotted in Figure 8 and fitted
with the sine curve, Y = 18.3542 + 0.1085u; -+ 1.3615v;.

The adequacy of a simple sine curve has been tested by the analysis of
variance in Table 10 of the transformed variates y. If our Poisson hypo-
thesis is correct, the mean square for error in row 7, s* = 0.242 with 63
degrees of freedom, should not differ significantly from its expectation
0.25. Since the agreement is excellent, each sum of squares for which s
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Figure 8. Mean hourly incidence of births in five hospitals and sine curve,
from Appendix Table 5.

serves as the error becomes a x* when divided by 0.25 and has the same
number of degrees of freedom as before.

The average sine curve in Figure 8 accounts for 89.9% of the variation
in the means, with the highest birth rate at 6:12 a.m. Although the re-
maining scatter is significant (x* = 40.42, P = 0.007), it would not be
reduced appreciably by adding the second term in a Fourier series. Sepa-
rate sine curves for the four series also differed significantly, primarily in

TasLE 10. Analysis of variance of the hourly frequency of human births
in Appendix Table 5; x> = SS/0.25.

Row Term | DF SS MS \ x | P

: i
1 Between series 3 750.1977 | 250.0659 3000.79 | < .001
2 Hours, effect of (a,+b.) | 2 | 89.5420 | 44.7710+ ‘ ‘ < .001
4 »  scatter 21 10.1042 | 4812 4042 | .007
5 Series X Hour (a.+b.) | 6 7.2891 1.2148 29.16 | < .001
7 » X " scatter 63 15.2561 2422 | 61.02 35
8 | Total 95 |872.3891 ‘
10 Series X Amplitude, | 3 | 53943 1.7981 | 21.48 ‘ < .001
11 » X Phase 3| 18948 | 6316 | 7.58 | .055
PEA =1 44.7710/1:4538 = 30:80, ni = 2, 0t =89
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amplitude and relatively little in phase. The larger deviations in birth time,
or its recording, in row 4 tend to recur in all four series, due in part, King
suggests, to similarities in hospital routine. Thus the recording of births
may be delayed by the nurses’ conference between 7 and 8§ a.m. when the
staff changes, and the balanced low and high points in the hours starting
at 3 and 4 and at 7 and 8 p.m. may have similar explanations. This loca-
tion of observation periods when the recording may be at fault is another
advantage of periodic regression. Because of the significant variance com-
ponents in rows 4 and 5, the critical test for (a, -+ by) in the average sine
curve is F* = 30.80 with an error variance of s* = 1.4538 (n’ = 8.19)
and P < 0.001.

Probit transform

In biossays of toxicants, such as insecticides or fungicides, and of drugs,
the susceptibility of the test organism varies so commonly and usually so
unpredictably that a reference or Standard preparation is almost invariably
tested concurrently with the sample or Unknown. The variation in sus-
ceptibility may be so large, however, as to complicate the selection of a
suitable range of dosage levels, especially when the response is a binomial
percentage. In an extreme example, the same series of fungicidal concen-
trations might kill all test spores at one season and none at another. In
either case the experiment would be valueless as an assay. If the spore
susceptibility were to vary predictably through the year, the concentra-
tions could be so adjusted as to obtain on each occasion an adequate num-
ber of intermediate mortalities between 0 and 100 percent. A response in
which the seasonal variation has been studied systematically is that of the
toad Bufo arenarum to chorionic gonadotrophin (Penhos et al, 1954). For
two years 40 male toads were collected in the field on the first of each
month and on the following day injected in four lots each of 10 toads
with the same four dosage levels of the International Standard. The num-
ber of individuals in each lot which reacted positively, by releasing sperm,
is recorded in Table 11. Not more than one dose in each test produced a
reaction of either 0 or 100 percent.

Our problem is to predict from these data the response to be expected
at each dosage level in each month of the year. As an all-or-none reaction,
we would expect the probit for each percentage to be linearly related to
the logarithm of the dose, as indeed proved true. The first step, therefore,
was to convert each percentage between zero and 100 to its empirical
probit, and to estimate the provisional slope b = 5.27 from these values
on the assumption that all 24 curves are parallel. From these parallel pre-
liminary curves a provisional expected probit could be estimated for each
lot in which none or all of the toads reacted, and then by suitable tables
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TaBLE 11. Number of toads, Bufo arenarum, in each group of 10 reacting positively

to four different doses of chorionic gonadotrophin measured in international units

per animal, and the log-ED50 computed from each test and from the average sine
curve. (Penhos et al, 1954)

1951-52 1952-53 Log-ED50
Month | No.(+) at dose Log- No.(+ ) at dose Log- from

40 30 225 15 EDSO | 40 30 225 15 |EDS50 | sine curve
Nov 10 8 7 3 1.272 10 9 6 2 1.288 1.318
Dec 9 7 5 2 1.358 9 7 6 3 1.325 1.353
Jan 8 6 4 2 1.404 7 5 3 1 1.471 1.402
Feb 7 5 4 1 1.452 8 6 4 1 1.420 1.453
Mar 7 5 3 1 1.464 6 3 2 0 1.552 1.492
Apr 7 4 '3 0 1.502 8 6 2 0 1.471 1.508
May 9 2 1 0 1.536 8 4 1 0 1.520 1.498
Jun 9 5 4 1 1.420 3 S 4 1 1.437 1.464
Jul 9 6 4 1 1.405 9 6 3 0 1.439 1.415
Aug 10 7 4 2 1.353 9 7 3 2 1.388 1.364
Sep 10 8 S 3 1.304 10 7 4 2 1.356 1.325
Oct 10 8 5 2 1.322 10 8 4 2 1.339 1.308

(Fisher and Yates, 1957) its corresponding working probit. This com-
pletes the set of 24 probits at each of the four dosage levels, their sums
leading to a new unweighted provisional slope of b = 5.704. From the
sums of the 8 probits for each of the 12 calendar months, a sine curve
could be computed by Equation 8 for predicting the mean probit in each
month as Y = 4.9751 4 0.5327u; — 0.2693v,. With the provisional b
and Y it was a simple matter to calculate the expected probit for each of
the four dosage levels in each calendar month. These determine the weight-
ing coefficients w and, with the observed proportion of positive reactions in
each lot, the working probits y for computing the maximum likelihood
estimates of the 24 curves. (Bliss, 1952; Finney, 1952)

The variation in y about the 24 separately computed curves was well
within the sampling error, Sy* = 15.84 for 38 degrees of freedom. When
tested for differences in slope, the curves proved satisfactorily parallel
(x, = 4.28, n = 23) with a combined slope of b, = 5.4724. Given this
slope and for each curve its weighted mean log-dose X and probit ¥, the
EDS5O0 in logarithms has been determined for each month as listed in the
Table 11. The sums of the replicate responses in the two years were then
fitted with the single sine curve

Log-ED50 — 1.4083 — 0.08987u; - 0.04462v,
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with which the expectations in the last column of Table 11 have been
determined. The computed curve and the observed log-EDS50 for each
month have been plotted in Figure 9.

In an analysis of variance, the log-EDS50’s for the two years, agreed in
their annual means, in their separately fitted sine curves, and in the random
scatter about these curves. An expected variance was then determined for
each log-ED50 from the sum of the weights (Sw) for its log-dose probit
curve and the square of the difference, (¥—5)2. These varied by less than
7 percent so that an average variance, o2 = 0.001795, could be based
upon two means, Sw = 18.775 and (5—¥)* = 0.06742, from the internal
evidence of the separate monthly determinations. With this expected error
variance, the total sum of squares about the average sine curve (from
the analysis of variance of the log-ED50’s) could be converted to y* =
0.023881/0.001795 = 13.31 with 21 degrees of freedom.

16 40

Log ED-50
ED-50

1952 1953

Figure 9. Log-ED50 for gonadotrophin in toads in 24 successive months
and annual sine curve, from Table 11.

The observations in Table 11 agree so well with our mathematical model
that the three constants in the sine curve plus the combined slope b provide
an adequate description of the response of this species to gonadotrophin
through the two years of the experiment. Indeed, the three main sources
of variation — of the working probits y about the 24 straight lines, be-
tween the slopes of these lines, and of the log-ED50’s about the sine
curve — all had smaller x*’s than would be expected binomially and were
consistent with one another. When totalled over all sources. Xx* = 33.425
with approximately 82 degrees of freedom, after allowing for each probit
with an expectation of less than 0.5 positive or negative response. The
probability for so small a combined »*, P < 0.000,001,is well outside the
range attributable to our initial hypothesis of simple binomial variation.

The seeming paradox can probably be iraced to differences in the in-
herent sensitivity of the field-collected experimental animals. If on a given
day these represented several collecting points with unequal thresholds of
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response, and if the toads from each location were assigned equally or at
random to four test groups, each group of n toads would be a mixture
from several populations of sensitivity. For a given dose of hormone, the
mean of the p’s for the different populations would have an unbiassed
proportionate response p but, as noted by Kendall (1945), its variance
would be reduced from the binomial npq, as assumed in probit analysis,
to n}ﬁ — nV(p), where V(p) is the variance in p between populations.
Why this would reduce the observed variance may be illustrated by a
hypothetical extreme case in which half of the toads at a given dose were
collected from a field population of resistant individuals which never re-
acted and the other half from a different source of very susceptible toads
which always reacted. Their combined response would always be exactly
50 percent with a variance of zero.

Adjustment by Covariance

A biological response may be influenced by prior or concomitant variables
which, though measurable, are impossible or impracticable to control. A
climatic factor, for example, is far easier to measure than to control, and
any effect it may have upon a biological response can then be adjusted by
covariance. If the covariate is quite unrelated to the cyclic pattern of the
response or variate, covariance may reduce the experimental error in the
response and strengthen its underlying periodic regression. Alternatively,
the covariate may display periodicities so similar to that of the variate,
that covariance greatly reduces or eliminates the initial periodicity in the
response; it then aids in interpreting the underlying phenomenon. In either
case, the adjustment for the covariate depends primarily upon the linear
regression of the response y upon the covariate x as computed from the
sums of squares [x*| and of products [xy] in the error row of the analysis.

A case in point is the diurnal variation in the heat exchange of cows
reported by Thompson (1954). In an experimental barn under close en-
vironmental control, the average heat exchange was determined in BTU’s
per hour for six animals on each of three days. These measurements were
paralleled by a record of the humidity expressed as pounds of water per
pound of dry air, the mixing ratio, on the three days of the test, in all
cases at an average temperature of SO°F. In fitting a sine curve to the
initial data, Thompson noted that the humidities seemed not to follow any
periodic pattern. In Appendix Table 6, the individual observations of
humidity have been coded and the BTU’s transformed to logarithms (—3)
with a gain in consistency.

Three columns of the analysis of covariance in Table 12 are sums of
squares from analyses of variance of the covariate [x*| and of the variate
[y*], and the corresponding sums of their products [xy] in which the num-

TasLE 12. Analysis of covariance of data on hourly heat exchange of cows in Appendix Table 6. B, = [xy]?/[x?] in etTor

[xy]?/[x’] from sums in last rows; the reduced error MS = {[y*] — B.2}/DF; in rows 1 to 5 each reduced

row 7, B:®

*—B.")}/DF.

a

MS = {[y*] — (B.
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bers formerly squared are here cross-multiplied, all other operations being
identical. Comparisons of the mean squares from rows 2 and 4 show in
the column for [y?] a well-marked sine curve (F = 17.17) in terms of
the heat exchange but in that for [x?] no trace of a sine curve (F = 0.34)
in terms of the mixing ratio. In consequence, the covariate x is here essen-
tially an environmental rather than an explanatory adjustment. The second
term of a Fourier series fitted to the heat exchange proved negligible and
has not been isolated in Table 12. In the error row, representing the inter-
action of days by scatter, the highly significant linear regression of y upon x
(F = 33.65), accounts for 100 X 0.014303/0.031714 —= 45% of the
unadjusted error in the log-BTU, y.
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Figure 10. Log-BTU exchange in cows and sine curve for intervals start-
ing at each stated hour, adjusted for differences in relative humidity, from
Appendix Table 6.

After correction for the covariate, the ratio of the reduced mean square
for the average sine curve in row 2 has increased relative to that for scatter
in row 4 (F = 19.57). However, both the scatter in row 4 and the inter-
action of days by (a; 4+ b;) in row 5 are so very significant (P < 0.001),
that the appropriate error for the average sine curve is the combination of
the reduced mean squares in rows 4, 5 and 7, s> = (.001708-1-0.004332
—0.000425 = 0.005615 with 5.14 degrees of freedom, from which F’
= 5.95 and the true significance of the adjusted curve is P < 0.05. The
hourly means, adjusted for the covariate x with the slope by, = 0.11068,
have been plotted in Figure 10 with the adjusted sine curve, Y = 0.47793 —
0.00736u; + 0.04255v,.

W
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PER1IODIC REGRESSION

Precision of the Computed Curve

The statistics of the Fourier curve, such as its mean amplitude and phase,
are estimates subject to error. In considering their precision, we will restrict
ourselves to the first harmonic or sine curve. Of the several sources of
variation to which it is subject, the most nearly random is the residual
error about the series of curves fitted separately to each replicate and
designated as ¢* in Table 4. A second source is the scatter of, say, the
monthly means of the f replicates about the average fitted curve, which
involves the additional variance component o>, A third source, the varia-
tion between the sine curves fitted to each replicate, is divided between
the sum of squares for replicate means or totals (a,) with f-1 degrees of
freedom, and that for the interaction of replicates by (a;-b;) with 2(f-1)
degrees of freedom. The replicate means especially may include a system-
atic element which, when segregated, leaves an essentially random com-
posite of o* and ¢.?, as in the analysis of the tree potentials in Table 7.
For predictions from the average curve to the population of which the
replicate equations are a sample, the error variances for a, and for the
regression coefficients a; and b, rarely contain quite the same components.

Error terms for each statistic

The error variance of each statistic, as derived by large sample theory,
is in terms of the population variance ¢, but in practice is solved with an
estimated s* based upon the mean squares in an analysis of variance. The
statistics a,, a; and b; in Equation 3 or 6 have error variances similar to
those for linear regression equations. The variance of a_ is

V(a,) = ¢°/N (14)

for N values of the variate y, where our estimate of o is usually the mean
square between replicates in an analysis of variance. In common with the
linear regression coefficient, the error variance of a; and of b, is ¢ divided
by the denominator of the coefficient or

V(a;) = V(by) = o*/f2u® = 2¢%/fk (15)

where f is the number of replicates at each of k intervals in the cycle. The
estimate of ¢ will depend upon which of the variance components defined
in Table 5 have proved significant in the analysis of variance,

The functions of a; and b, are of as much interest as the coefficients
themselves. One of these, the semi-amplitude A = /a2 -+ b2, can be
shown to have the same variance as the coefficients from which it is com-
puted or

V(A) = ¢*/f3uy® = 20%/fk (16)



CONNECTICUT EXPERIMENT STATION BULLETIN 615

These variances are in units of y2. In contrast, the variance of the phase
angle # = b, /a,, is in terms of radians squared and is estimated as

V(8) = 2¢*/fkA? (17)

This can be converted, of course, from radians to units of the original
cycle. The square root of each variance is the standard error of its statistic.
When computing confidence or fiducial limits for a given probability 1—P,
the standard error is multiplied by the corresponding Student’s t for the
degrees of freedom n in the estimate of .

These estimates of precision may be illustrated with the example in
Appendix Table 2 on the diurnal variation in the standing potential of an
elm tree, which includes a trend. Since each variate y is the sum of the
potentials at a given hour on three successive days, coded by changing
the sign and subtracting 150, reversing the code and dividing by 3 con-
verts each y to the original unit. Each mean square in Table 7 is decoded
by dividing by 32. Because of the progressive decrease in the average
potential through the period covered by the data, the estimate of a, and its
error are contingent upon the date for which the equation is to be solved.

For any day (x) from August 1 to 25, 1953, inclusive, our estimate of
the position of each curve is a, = —60.359 — 0.4751 x. With this pro-
viso, the variance of a, is computed with the mean square for the scatter
about the trend, 947.9706/9 —= 105.3301 to obtain by Equation 14,
V(a,) = 105.3301/192 = 0.54859. At the mean date, X — August 13.25,
the standard error of a_ is 1/0.5486 = 0.7407; at any other date its vari-
ance would be increased by the variance of the slope multiplied by (x-x)>2.
Whenever the variation in T, defines a trend, the estimate of a, is subject
to a similar limitation.

Since the mean squares for both scatter and the interaction of replicate
by (a,-+b;) are here significant, the variance of the regression coefficients
a; and b, is a linear combination of three mean squares, s> = (15.6421
-+ 186.4238 — 5.3761)/9 = 21.8544 with 15.50 degrees of freedom
(Equation 12). The regression coefficients, a; = 2.2017 and b, = 5.0279,
and the semi-amplitude, A = Vv 30.1275 = 5.4889, have identical vari-
ances: V(a;) = V(b)) = V(A) = 2x21.8544/8x24 = 0.22765, and
a standard error of 1/0.22765 = 0.47713.

The tangent of the phase angle 6 can be computed without smoothing
error from the coded numerators for a; and b; as tan ¢ — (—1448.035)/
(—634.103) = 2.2836. Since b; and a; are both positive after decoding,
¢ = ¢’ and the phase angle is § = 1.1580 radians. Multiplying by 24 /2~
converts 6 from radians to 24X 1.1580/6.2832 — 4.4234 hours, as meas-
ured from our first reading at midnight, which places the maximum poten-
tial at 4:25 a.m. For the variance of 6, we have from Equation 17 and
the variance of a,, V(6) = 0.22765/30.1275 = 0.007556. In terms of
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hours the phase angle has a standard error of 24<0.08693/6.2832 —
0.3320.

Each of these standard errors, with approximately 15.50 degrees of free-
dom, is multiplied by Student’s t = 2.1255 at P —= 0.05 in computing the
95% fiducial or confidence limits. For a;, b; and A, the limits are 2.1255X%
0.47713 = 1.0141 above and below each statistic. Their relations are
shown conveniently in Figure 11, where b; has been plotted on the ordinate
against a; on the abscissa, and the clock hours are indicated on the half
circle. When considered independently, the two regression coefficients are
consistent at odds of 19 in 20 with any value of the parameter falling be-
tween the parallel horizontal or vertical lines bounding the point a;,b;.
The corresponding interval for the semi-amplitude, the length of the solid
line from zero to the point a;,b;, is defined by two parallel arcs with their
centers at zero. The time of the maximum tree potential and its limits are
marked by projections to the time scale on the half circle.

Composite tests

In estimating a separate interval for a; and for b;, which would include
its parameter in all but five percent of trials, we would reject their true
values, considered jointly, with a frequency of 100(1 — 0.95%) = 9.75

percent. A more comprehensive approach is provided in Section 64 of
“The Design of Experiments” by R. A. Fisher. If a; and b, are estimates
of the true coefficients «; and g4, the following inequality holds if the hy-
pothesis is not to be contradicted at the percentage level selected for the
variance ratio F:

(}-ll_“ul): 2 73 (.}JL_,BIJ: ngb—‘!kf (ISJ

where F is the tabular value with n; = 2 and n, = the degrees of freedom
in the relevant error variance s%. The denominator converts the numerator,
a sum of squares with two degrees of freedom, from units of a single
variate y to that of the regression coefficients a; and b;. Any pair of postu-
lated regression coefficients oy and 3; would be excluded if, in the quad-
ratic form at the left, the differences were to exceed the limiting sum of
squares on the right of the inequality.

All acceptable values of the parameters «; and 3, then fall within a circle
centered at the point a,,b;, which also defines the joint limits of the true
amplitude and of the true phase angle. Its radius is the square root, of the
right side of the above inequality or / 2Fs?/31kf. For the limits of the
phase angle, the radius of the circle for any given probability is multiplied
by k/=A to convert it to the scale of k subdivisions in a complete cycle.
The circle enclosing all acceptable parameter values at a selected level of
significance may be drawn in a diagram not unlike Figure 11, and supple-
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mented, if desired, with a series of concentric circles, one for each addi-
tional probability.

For our example on tree potentials, we may obtain indirectly from the
table of z in Fisher and Yates (1957) F = 3.6572 for the 5% point and
F — 11.1471 for the 0.1% point at n; = 2 and n, = 15.50. Substituting
F — 3.6572 in Equation 18, any pair of postulated coefficients «; and g,
which does not violate the inequality

(2.2017 — a1)* + (5.0279 — B1)* <1.6651

would be admitted at the 5% level by our observations. This pair of values
would fall within a circle with a radius of v/1.6651 = 1.2904. Substituting
F for the 0.1% level, we would have a larger concentric circle with a
radius of 2.2528. These two circles have been added to Figures 11.

Finer Adjustments

Correction for length of month

In the annual cycles that we have been considering, the variate for each
month has been given equal weight, although months differ in length by as
much as 10%. The month containing the maximum or minimum variate
has been estimated with an “average” month of 1461/48 = 30.4375 days,
and the date within the selected month then based upon its length. In a
paper of the Meteorological Research Committee (London), Craddock
(1955) has provided an adjusted set of multipliers which allows for dif-
ferences in the length of the month. With these multipliers, the coefficients
for a two-term harmonic equation can be computed as readily as with the
orthogonal cosines and sines in Table 1. For computing the corrected ex-
pectations Y,, he provides a second table of the cosines and sines for each
month. Since it is not orthogonal, his equation cannot be reduced immedi-
ately from two terms to one term or extended to a third or higher term as
the data require. For describing the annual course of the mean tempera-
ture in the northern hemisphere, this limitation is negligible, since Crad-
dock has found that a two-term Fourier series applies quite generally.

As an indication of the size of the correction with relatively precise
data, the monthly mean temperatures in Table 2 have been fitted by both
methods. When computed from the totals T by Equation 9, weighting each
month equally and with exact values for =u;® and Zv;® instead of their ex-
pectations, 1k = 6, we have the two-term harmonic series:

Y — 50.7655 - 20.9898a, -+ 3.4853b; — 0.1060a, - 0.6825b.

starting with July as t,. The monthly means for this 14-year period ¥ and
their expectations Y from the above equations are listed in Table 13. When
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TaBLE 13. Comparisons of the observed monthly mean temperatures in New Haven

for 14 years (¥) and their predicted values from two-term Fourier equations com-

puted without weighting (Y), with corrections for the length of each month (Y.),
and with the weights w (Y ) in Table 14.

Month Observed Unweighted =~ ——— Difference between means ——
¥ Y Fi—Y Y.—Y We=W

Jul 72.4357 71.6494 .7863 —.0071 .1765
Aug 70.9286 71.2234 —.2948 .0017 .0077
Sep 64.1357 64.9228 —.7871 .0185 —.1965
Oct 54.8714 54.3568 5146 .0067 —.2137
Nov 43.4714. 42.7508 .7206 —.0265 —.0064
Dec 32.6929 33.6869 —.9940 —.0387 .2358
Jan 29.9214 29.6697 2517 —.0059 .2806
Feb 31.4571 31.3837 0734 .0370 .0828
Mar 37.9214 37.8963 .0251 —.0752 —.1702
Apr 47.8000 47.3861 4139 =039, —.2435
May 56.8714 57.7040 —.8326 —.0081 L0841
Jun 66.6786 66.5560 .1226 —.0054 .1308

Z(F—Y)® = 4.04575, Z2(Y.—Y)* = 0.01085, (Y. —Y)* = 0.36917

corrected for differences in the length of the successive months but start-
ing in January as t, we have with Craddock’s weighted multipliers the
two-term harmonic equation:

Y, = 50.8623 — 19.7304a;, — 8.6060b, — 0.4865a, -+ 0.5148b.

The corrected predictions for each month Y, were then computed with
Craddock’s parallel table of cosines and sines and the constant a, =
50.8623.

The discrepancies (Y,—Y) may be compared with the deviations
(¥—Y) of the observed means from their simpler predictions Y. They
are clearly of a different order of magnitude. Comparing their sums of
squares, 1002 (Y ,—Y)?/2(¥y—Y)* = 0.27 percent. If this single example
can be considered a reliable indicator, the discrepancy due to computing
the Fourier regression coefficients as if months were equal in length
should be negligible for most purposes.
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Variance homogeneity

A second discrepancy between theory and observation may be traced
to our assumption of equal variability at successive intervals through the
cycle. Climatologists, for example, have long known that the variation in
temperature from year to year in a given locality is greater in winter than
in summer. To the extent that this inequality represents harmonic varia-
tion, either in amplitude or in phase, it should be attributable to differences
between the curves fitted separately to the data for each year. If this ex-
planation were fully effective, the deviations of the observed monthly
means from the fitted annual curves should be of the same magnitude in
each month through the year. The problem is important in predicting the
size of discrepancies from the fitted curve, and in determining the best
estimate of the mean curve over the several replicates.

When comparing the observed temperature in each interval with its
expectation, approximations in curve fitting which are entirely edequate
in an overall analysis may prove troublesome. Sums of the squared in-
dividual deviations may differ from their counterparts in the analysis of
variance in the third and even in the second significant figure due to
apparently negligible rounding errors, especially if the average Fourier
curve absorbs a very large proportion of the total sum of squares. As in
the calculation of a reciprocal matrix, a good numerical check may de-
pend upon carrying what seems initially to be an unreasonable number of
decimal places. An example is our substitution of the true value Jk for Zu;
and Sv;2 in the denominator of the Fourier coefficients, some of which are
irrational numbers rounded to three decimal places. In a cycle of twelve
subdivisions, this substitutes 1k = 6 for 3u,* = Zv,> = 5.999824, 3u,* =
6 exactly and Sv.* = 5.999648, the sums of squares of the rounded coef-
ficients. These latter values have been used in the following analysis.

Because the second term in the Fourier series has varied significantly
from year to year, it has been retained in a closer analysis of the monthly
mean temperatures in New Haven in Table 2. As a first step, a separate
two-term Fourier equation (Equation 9) has been computed from the
12 monthly means (y) for each year. Each of these 14 equations was then
solved 12 times, with the u; and v; for t = 0 to 11, leading to a table of
predicted means, designated here as v, which parallel the y’s in Table 2.
The averages of the 14 §’s, one for each month, agreed exactly with the
Y’s in Table 13 computed independently with the two-term equation based
upon the monthly totals of the y’s, Ti. Each ¥ was then subtracted from
its corresponding observed mean temperature y in Table 2, to obtain the
deviations d = (y—v) in Appendix Table 7. These total zero for each
year, and for each month their average is equal to the difference (¥ —Y)
in Table 13.
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TaBLE 14. Observed monthly variances (per degree of freedom) of New Haven

mean temperatures for (§ —Y)? from the observed means § and their unweighted

predictions Y in Table 13, V(y) from the deviations of the y’s in Table 2 from their

column means y, V(§) from the deviations (¥ —¥), and V(d) from the deviations

(y—9) in Appendix Table 7; expected standard deviations (SD) from the sine curve

fitted to log-V(y); weights w = antilog(1 —1log-V(d) for computing the weighted
two-term Fourier curve Y. in Table 13.

Month r—‘_i Observed variance from ———— SD Erom

(F—Y)* V(y) V@) Vi(d) log-V(y)
Jul 14.840 3.538 7.348 2.039 1.683 5.4
Aug 2.087 3.401 7.475 1.309 1.680 4.8
Sep 14.866 2.904 4.162 3.206 1.853 375
Oct 6:357° ¢ 4.564 4.018 5.123 2197 2.4
Nov 12465 4851 10.678 4.805 2,679 1.6
Dec 23.715 12.170 20.887 8.533 3.183 1.2
Jan 1.521 19.450 21.260 12.752 3.519 1.1
Feb 129 11.101 13.342 6.257 3.525 1.3
Mar .015 9.560 11.171 5.670 3.198 1.7
Apr 4.112 5.832 11.388 2.432 2.696 2.6
May 16.636 4.798 6.577 4.291 2.212 3.8
Jun 361 3.440 4.537 2.275 1.861 4.9
Mean 8.092 7.134 10.275 4.891 2.434 343
=(DF) 7 156 65 91 = T

Four variances were then determined for each month in units of the
variance of a single monthly temperature y. The average of each series of
variances over the 12 months agreed with its corresponding mean square
from the analysis of variance, in several cases combining sums of squares
that were reported initially in separate rows. The series of variances in
Table 14 have the following composition:

Those from (§—Y)* measure the discrepancy of the observed 14-year
average for each month from that computed with the two-term Fourier
equation for all 14 years, each with 7/12 of a degree of freedom. These
deviations would be absorbed completely by the remaining terms of the
Fourier series if it were extended to the limit.

The empirical variances V(y) = =(y—¥)*/13 represent the variation
of the 14 y’s for each month in Table 2 about their observed or column
mean y. They show a marked seasonal trend. Each sum of squares
Z(y—¥)*® with 13 degrees of freedom has been divided into two parts to
obtain the next two series of variances.
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The variances V(y) measure the variation of the predicted y’s about
their mean, or that part of the variation in each month which is attributable
to the 14 annual two-term Fourier curves. The average of the V(y)’s with
65 degrees of freedom is equal to the mean of the sums of squares in rows
14546 of the analysis of variance (Table 6). These monthly variances,
each with 65/12 = 5.4167 degrees of freedom, absorb part, at least, of
the seasonal trend in the variance.

The variances V(d), averaging less than half of the V(¥)’s, represent
our nearest approach to a random error. They have been computed from
the differences d for each month in Appendix Table 7 as V(d) =
123(d—d)%/91, each with 91/12 degrees of freedom. Their mean cor-
responds in the analysis of variance to the mean square in row 7. Although
much of the initial seasonal trend in the variance has been absorbed by the
V(y)’s, a substantial amount still persists.

The pattern of the seasonal trend in the empirical variance V(y) and
in its two components in Table 14 may be defined periodically. Since the
distribution of the log-variance is approximately normal (Bartlett, 1947),
the following sine curves have been fitted to their logarithms and plotted
in Fig. 12:

Log-V(y) = 0.7727 — 0.3203u; — 0.0888v;, (s = 0.01198)
Log-V(§) = 0.9490 — 0.2585u; — 0.0662v; (s> = 0.02532)
Log-V(d) = 0.6071 — 0.3384u, + 0.0165v, (s* = 0.02106)

In no case was the second Fourier term significant. By Equation 4, the
semi-amplitudes (A) of these curves are respectively 0.3324+0.0119,
0.2668+0.0174, and 0.33924-0.0158. From antilog (2A.) for each series,
the smallest expected variance in the mean summer temperature would be
multiplied by a factor of 4.62 for y, 3.42 for ¥, and 4.77 for d to abtain
the largest winter variance. From the phase angle for each curve, the
variances were maximal on January 31, 30 and 12 respectively.

Weighted periodic curves

The variance of the mean temperature differs sufficiently through the
year from the equality implied in our initial model, that a weighted analy-
sis might be expected to improve our estimate. Appropriate weights would
be the reciprocals of the expected random variance, computed from the
sine curve for log-V(d) as w — antilogarithm of 1 — log-V(d). These
weights, in the last column of Table 14, vary from 1.1 to 5.4 and resemble
the second of the three weighting systems suggested by Craddock (1955)
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Log- Variance in Mean Temperature — 14 Years

Month
Figure 12. Seasonal variation in the logarithm of the variances in Table 14,
from [y*] = X(y—7¥)* for the overall deviations in the monthly mean tem-

peratures, and from its components [§°] = =(y—¥F)® and [d*] = =(v—9)%,
each fitted with a sine curve.

for a similar purpose. The weighted two-term Fourier curve, computed by
partial regression, has the equation:

Y, = 50.7655 & 20.9378u; - 3.5002v, + 0.1226u, 4 0.6028v,

When solved with the cosines and sines for each month, the weighted mean
temperatures Y, differ from the unweighted expected means Y as shown
by the differences (Y ,—Y) in the last column of Table 13.
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The sum of squares from these differences is a considerably larger frac-
tion (9.12% ) of =(y—Y)? than the 0.27 percent for the corresponding
differences (Y,—Y). Although the weighted estimates Y. may be superior
theoretically, their curve requires the solution of a reciprocal matrix and
gives considerably more weight to the summer than to the winter tempera-
tures. From a commonsense point of view, one may question whether the
weighted estimates are as satisfactory climatologically as those from the
unweighted Fourier equation, to which each month contributes equally. Is
it wise to base the estimate of the annual curve so largely upon the sum-
mer months?

Normality of temperature deviations

In analyses of variance of periodic regressions we tacitly assume not
only that the random deviations are equally variable at each t but also
that their distribution is normal. Because of the small number of years
in our climatological example, the normality of the deviations d has been
tested graphically. The rankits* for a sample of 14 have been plotted in
Figure 13 against the deviations for each month in Appendix Table 7 in
rank order and each fitted with a straight line. Their slopes are less in
winter than in summer, as would be expected from the seasonal change in
the variance. If the distributions are normal, the plotted points should not
curve systematically from the computed straight lines. To test whether the
trends in Figure 13 cancel out, the deviations may be averaged for each
position over the 12 months (i.e., the largest in each month, the next
largest, etc). The rankits have been plotted against these averages in the
left side of Figure 14 and fitted with a line passing through 0,0 with a
slope of 1/s = 0.5920, where s = /445.0708/12X13 = 1.6891. The
close agreement with a straight line confirms our initial hypothesis that the
variation about the two-term Fourier series for each year is here essentially
normal.

Two aspects of periodic regression need to be distinguished. The first is
the harmonic analysis of periodic data to determine their underlying pat-
tern and the magnitude and nature of the variation to which this pattern
has been exposed. The second problem is that of predicting future re-
sponses from our present data, as is commonly the objective in climatology.
Unless the constants in our fitted Fourier curve for each year were to define
a trend which might be expected to continue, and climatologists are not
agreed upon the existence of these trends, the prediction of future tem-
peratures would have to be based upon the average curve for past years.

* A rankit is the expected mean deviation for each rank in an ordered sample of a given size from
a normal population with a mean of zero and a standard deviation of one (Fisher and Yates,
1957, Table XX).
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The error in our prediction would then involve not only the variation
around the annual curves, which seems to be satisfactorily normal although
not constant, but also the variation of the annual curves about their aver-
age for the series of years. When these two sources of variation are com-
bined, a convenient estimate of the standard deviation for each month in

Rankit

Deviations y-y in Degrees Fahrenheit

Figure 13. Rankit test for agreement of the deviatioqs in the monthly mean
temperature with the normal distribution, from the differences d = (y—9)
in Appendix Table 7.
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°F is SD = antilogarithm of é(log—\?(y) ) in Table 14, from the equation
of the upper sine curve in Figure 12. There is no assurance a priori, how-
ever, that the composite variation will be distributed normally.

For a graphic test of normality, the deviations (y—Y), which also
include the differences (y—Y ), have been computed from the y’s in Table
2 and the Y’s in Table 13. These were ranked in order for each month
and then averaged over the twelve months to obtain the rankit diagram in
the right side of Figure 14. The plotted points have been fitted with a
straight line passing through 0,0 with a slope of 1/s = 1,/2.679. Not only
is the slope much less than that for the deviations about the annual fitted
curves in the left side of the figure, but the points themselves describe a
trend that is less certainly linear.

Mean Deviations from d= (y-Y)
-3 =2 =1 -0 ! 2 3
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Mean Deviations from (y-Y)

Figure 14. Test for normality of the ranked deviations (y—¥) in Figure 13
average over the 12 months (left curve), compared with a similar diagram of
the average deviations (y—¥) from the 14-year means for each month (¥).

Despite their limited sensitivity with as few as 14 replicates, the numeri-
cal measures of skewness (g;) and kurtosis (g,) have the advantage of
separating these two types of non-normality (Fisher, 1954). Both statistics
are normally distributed about zero with a standard error depending only
upon the size of the sample. They have been computed for each month
from the distribution of the observed temperatures y about their monthly
means ¥; neither approached significance in any one month or in com-
posite x* tests over all 12 months. On the off chance that a seasonal trend
might still be discernable, separate sine curves have been fitted to the
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twelve monthly values for g; and for g,. Neither periodic trend approached
significance (P > 0.20), but their minima and amplitudes may be sug-
gestive. The curve for g; had a minimum in December and an amplitude
of 0.507--0.338, and that for g; a minimum in January and an amplitude
of 1.019+0.552. In developing probability statements for the monthly
mean temperature from more extensive data, we may need to consider
not only seasonal changes in the standard deviation about the average two-
term Fourier curve, but also seasonal departures from normality.

Summary

Periodic regression is applied here to cyclic phenomena in biology and
climatology in which (1) the length of the cycle, such as a year or day, is
determined independently of the response, (2) the observations are spaced
evenly through the cycle, and (3) the number of replicates is constant at
cach interval. When the response (y) changes symmetrically through the
cycle, the first harmonic or sine curve is defined by the mean response
(a,) and two orthogonal regression coefficients, a; for the cosine u; and b,
for the sine v,, as Y = a_ -} a,u; -+ byv,. from which we can compute its
amplitude and phase angle. When the curve is not symmetrical, the sine
curve can be extended with additional terms for two, three or more cycles
in each fundamental period by classical Fourier analysis until the desired
fit is achieved.

The analysis of variance for deciding how many terms to retain in a
Fourier curve and for determining its error is based upon the mathematical
maodel for replicated regressions. In effect, a Fourier curve is fitted to each
replicate and the analysis determines in what respects these separate
curves differ from replicate to replicate. Various aspects of the calculation
are illustrated by the monthly mean temperatures in New Haven over a
14-year period, the monthly iodine values of butterfat from five creameries
in Alberta, and the electrical potential of an elm tree in eight three-day
periods in August, 1953,

Both the number of terms in a periodic regression and the validity of
its analysis depend upon the selection of a suitable unit for the response.
The transformation to logarithms is applied to monthly data on two con-
tagious discases. The square root transformation for counts is illustrated
with data on the hour of birth, where agreement with the assumed Poisson
variation about a diurnal sine curve can be tested by x*. The analysis of
seasonal variation in the log-EDS50 for a biocide or a drug is computed
by maximum likelihood from all-or-none data with probits. A periodic
response can be corrected for differences in a concomitant environmental
factor by covariance, as illustrated by the adjustment for aperiodic hu-
midity of the diurnal variation in the log-heat exchange of cows in an
experimental barn,
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The precision of the constants for the first harmonic in a periodic re-
gression is considered from two viewpoints. The first defines the variance of
the statistics of a sine curve and the confidence limits of their parameters
when each statistic is considered separately. The second defines a joint
circular region within which any combination of the parameters for a, and
b, is compatible with our observations at a given probability.

Finer adjustments in periodic regression are examined with the monthly
mean temperatures in New Haven. A correction for differences in the
length of the month proved of minor importance relative to other errors
in fitting a two-term Fourier curve. Seasonal changes in the variance
through the year could be divided into two components, one representing
differences between the observed monthly temperatures and their predic-
tions by annual two-term Fourier curves, and the other differences be-
tween these predicted temperatures and the average two-term Fourier
curve for all 14 years. For each source the log-variance changed periodi-
cally through the year in a sine curve, leading to estimated standard devia-
tions for probability predictions and to weights for recomputing the average
Fourier curve. :

A distinction is drawn between two objectives in periodic analysis, that
of locating sources of variation and describing their characteristics, and
forecasting, which must ordinarily be based upon the average over all
replicates because of the unpredictable nature of long term trends. The
summer temperatures contributed proportionately more to the weighted
regression than the winter temperatures, a feature which may be poten-
tially less desirable for climatological predictions than the simpler process
of equal weighting through the year. In graphic tests with rankits, the
approximately random deviations from the yearly two-term Fourier curves
proved to be satisfactorily normal but when these were increased by the
larger differences between the yearly and the average curves, the data
suggest that seasonal departures from normality may modify probability
predictions based upon an average Fourier curve.
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Average monthly iodine value (—33.0) of butterfat from five creameries in Alberta, Canada, each based on
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1956)

104 consecutive weekly samples beginning in April 1952. (Wood,
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APPENDIX TABLE 3. Deaths from pneumonia for ten years starting September 1945, in terms of y = log(annual rate
per 100,000) —0.800. (Metropolitan Life Insurance Co., 1945-55)
Year Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug T I X1 X-
1945-46 409 462 501  .666 .869 769 749 655 486 .534 464 364 6.928 ! —9 6
1946-47 372 484 503 569 673 .603 658 727 557 412 .372 270 6200 | —7 2
1947-48 .335 .361 439 542 .699 .628 676 .566 555 .446 344 .300 5891 | —5 —1
1948-49 335 304 367 409 588 555 .548 .571 501 313 270 332 5.093 —3 -3
1949-50 290 316 .355 422 481 .448 528 552 474 358 200 .140 4.564 —1 —4
1950-51 .144 .264 .245 .396 443 467 673 .565 446 276 .245 191 4.355 1 =
1951-52 | .057 237 321 430 546 443 601 499 428 297 233 .168 4.260 3 —3
1952-53 124 225 358 382 467 .631 .635 479 314 297 286 .114 4312 5 —1
1953-54 279 154 .200 .390 393 415 446 .379 .279 264 221 221 3.641 | 7 2
|

1954-55 .209 237 237 334 483 472 455 412 .249 .204 .268 .245 3.805 9 6
T, | 2.554 3.044 3.526 4.540 5.642 5.431 5.969 5.405 4.289 3.401 2.903 2.345 49.049 0 0
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APPENDIX TABLE 4.

April 1942 to March 1957. (Serfling and Sherman, 1958)

Monthly log-incidence of poliomyelitis in the United States in cases per 1,000,000 population, from

Total
Year Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar T:
42-43 675 848 1.038 1.531 1.836 1.940 1.830 1.514 1.336 1.111 937 944 15.540
43-44 856 1.077 1.628 2.114 2.407 2.538 2.236 1.905 1.510 1.016 956 818 19.061
44-45 907 1.062 1.575 2.293 2.679  2.695 2.407 2.033 1.600 1.020 1.182 1.047 20.500
45-46 1.051 1.200 1.671 2.048 2.467  2.530 2.327 1.992 1.666 1.235 1.100 1.098 20.385
46-47 1.063 1.386 1.901 2.407 2814 2723 2.533 2.173 1.794 1.388 1:211 1.081 22.474
47-48 1.015 1.116 1.338 1.749  2.208 2.483 2.211 1.905 1.521 1.152 996 993 18.687
48-49 1.058 1.645 1.964 2.469  2.668 2.798 2.564 2.382 2.062 1.586 1.348 1.302 23.846
49-50 1.214 1.517 2.100 2.622 3.061 2910 2.614 2.375 1.995 1.573 1.534 1.458 24.973
50-51 1.315 1.598 1.961 2.380 2.739 2.824 2.697 2.492 2.055 1.698 1.471 1.251 24.481
51-52 1.308 1.430 1.887 2.375 2756 2.732 2.529 2.274 2.058 1.631 1.505 1.342 23.827
52-53 1.388 1.635 2.117 2716  3.057 3.107 2.882 2.445 2.144 1.738 1.490 1.330 26.049
53-54 1.459 1.724 2.123 2.618 2.834 2814 2.531 2.218 2.019 1.654 1.564 1.421 24.979
54-55 1.495 1.766 2.124 2.578 2797 2.867 2.684 2.306 1.922 1.491 1.301 1.293 24,624
55-56 1.502 1.798 1.963 2.393 2.807 2.712 2.404 2.112 1.769 1.454 1:337 1.332 23.583
56-57 15335 1.494 1.828 2.205 2460 2375 2.043 1.769 1.529 1.205 1.099 960 20.302
T 17.641 21296 27.218 34.498 39.590 40.048 36.492 31.895 26.980 20.952 19.031 17.670 333.311
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APPENDIX TABLE 7. Deviations (y—§ = d) of the observed temperatures y in Table 2 from their expectations § as computed from two-

term Fourier curves fitted separately to the temperatures for each year.

Year ‘ Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Total
43 ‘ — 495 — 117 355 543 359 —2.949 2.962 .050 —1.138 —1.309 2.808 —1.067 .002
44 2.261 52 —1.482 —1.604 2.582 1.218 —2.461 —1.652 3.132 1.504 —4.182 532 .000
45’ [ 1.672 —1.930 965 —1.757 3.318 —2.918 1.928 —3.003 4.185 —2.277 — .618 435 .000
46 L) ——1.613 692 009 649 —2.096 27y —1.887 A91 :HSONNE=RER TS, — ;354 | 000
47 1.648 331 —2.397 [E595 8 =253 J89 —1.0I5 — 781 1.730 .005 1.163 — .489 .000
48 — 910 252 A28 =1 157 2930 —3.534 1.894 248 - .995 907 —1.197 1.434 | .000
49 12855 = 326 —2.320 RIGZINT=—=T1T83 8 — 1 820 3.629° . — 22107  — 546 1480 — .283 —1.404 | .003
50 732 851 —2.430 1.463 131638 —=2:197 918 432 = 1:620) 4R SNE=RT]1B— 11620 000
51 — 3076 103 1.668 —2.203 414 el B e =T ol e [ 2,448 —1.813 1.152 [—.001
52 1.226 — .682 667 —1.316 1399 —1.059 290 282 0 =00 666 168 —1.141 : 000
53 1.104 —1.238 251 931 381 2407 —4.937 3.638. — .884 831 —2.114 1.093 I 001
54 | 1:055" — =101 15562 RSO0 8 ="236 =+ 005 I8 — 938 137 5685 = =997 |- 001
55 I dagilies =) 2.797 2.779 1.856 —4.511 1.436 2.2100 —1.886 471 — 889 761 | 001
56 —1.202 1.164 —1.191 — .285 S12 2.584 —4.998 2.803 691 — 448 —2.012 2.383 .001

Total | 11.010 —4.130 —11.018 7.206 10.092 —13.917 3.524 1.030 B3 585 =111655 1.718 .008
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