Biofuel Crops and Integrated Pest Management

Dr. James A. LaMondia
The Connecticut Agricultural
Experiment Station

Biofuel and BioDiesel

Fuel for transportation, heating Electrical generation
Biomass – combustion, ethanol

Why BioDiesel

US use: 20M barrels oil per day (World use = 80M) 60% imported, cost \$700 M / day Diesel = 8 gal of each 42 gal barrel Biodiesel may reduce part of the dependence on foreign oil, \$ - USA.

BioDiesel Benefits

Renewable – immediate, seamless No or minor changes to equipment Energy efficient, = power, torque Use as diesel fuel, home heating oil No net carbon gain - environment

BioDiesel Benefits

11% O, in B100, burns >efficiently B20: Fewer unburned emissions, PM, HC and CO < by 20-40% B20: CO₂ < by 16% Less toxic, degrades 4X faster

Biodiesel is an established and fast-growing industry.
Current production is about 250 M gpy

BioDiesel - Oil Sources

- Waste oil
- Oil seed crops

CAES Oilseed Crop Research

Crops that grow well in CT Fit with CT agriculture? (value)? Other benefits – added value?

- Integrated Pest Management
- Feed and fertilizer (meals)

Oilseed Crops:

<u>Crop</u>	<u>leed Ib/a</u>	% oil	gal oil/a
Canola / rapeseed	2000	40-45	125
Soybean	2500	18-20	50
Sunflower	2000	~ 40	100
Pearl Millet	4000	5 - 7	30
Cottonseed			35
Castor bean			150

N. American Oilseed Production

- > 12 million acres canola (11 in Canada), primarily food oils.
- > 73 million acres of soybean (US), primarily food crop.
- CT supplement other sources

Oilseed Crops - Plot Yields '06

Canola (spring) (national ave = 1366 lb/a)
Hyola 357 Magnum 1356 lb/a
DeKalb 38-25 1319 lb/a

Soybean (Maturity Group I-9) 6193 RR 3695 lb/a = 61.6 bu/a

(national ave = 43 bu/a)

Oilseed Crops - Economics

Canola (NASS 2006 ave prices) 1338 lb/a x \$11.10 /cwt = \$148/a

Soybean 61.6 bu/a x \$6.25 / bu = \$385 / a

Oilseed Crops - Economics

(NASS 2006 production, prices)

Canola = \$150/a

Soybean = \$385

Corn = \$475 (\$300 in 2005)

Winter wheat = \$175

= \$250

Oilseed Crops - IPM Aspects

Soybean fixes nitrogen fertilizer carryover of 15-20 lbs N/a Weed control – competes well Roundup Ready helps control problem weeds

Oilseed Crops - IPM Aspects

Herbicides used on crops do not control all weeds, repeated use selects for problem weeds. Ex. Tobacco – solanaceous weeds, galinsoga, ragweed.

Oilseed Crops - Meals

Remains after crushing seed Use -Animal feeds or fertilizer Tobacco crops in CT and MA use ~ 1 million lbs meals/yr (200 lb organic N/a – 4500 a)

Soybean Crops — IPM

Rotation crop 1 year in 4 or 5 Adds nutrients to soil (fix N) Weed control - (RR option) Meals used to supplement organic N sources replace cottonseed or castor meals

Canola versus Rapeseed

Both are Brassica species

Canola versus Rapeseed

- Canola Brassica oilseed bred for human consumption.
- Released in Canada 1970's
- Low erucic acid,
- Low meal glucosinolates

Canola versus Rapeseed

Rapeseed - Brassica oilseed with high glucosinolates in meals, low or high erucic acid in oil. Low -edible oil rapeseed, High -industrial rapeseed.

Erucic acid

Fatty acid, may be 40-50% of fatty acids in some Brassica spp. May have a variety of negative health effects. Amounts limited (< 2%) for human consumption.

Glucosinolates

Class of ~ 100 thioglucosides. Secondary metabolites common in Brassica spp. (odors / flavors) Break down to nitriles, ITC, thiocyanates etc – plant defense.

Biofumigation

Release of pesticidal products from green manures or meals. Brassicas 1-2 doz glucosinolates with different breakdown profiles, activities. (meals 10x)

Biofumigation

Target management of difficult to control pests and pathogens Weeds, soil fungi, nematodes.

Biofumigation Publications

Herbicide: Tissues, meals or extracts reduced germination or growth of certain weeds. Lot of variability related to SCN-

Weed control Rating (0-10) Microplot experiments - CT

Rapeseed 1.7 a
Small Grain 2.6 b
Potato 3.9 c

(weed rating of 1-10, low – high)

Biofumigation Publications

Fungicide and Bactericide: ITC amount, type, solubility and volatility related to toxicity vs Pythium, Rhizoctonia, Fusarium or Verticillium. (vapor, water)

Biological Control

Incorporated plant material stimulates microbial popns in soil, leads to general biocontrol, especially with low C/N ratios. (Competition, antibiosis)

Published Results - PNW

Plant
Dwarf Essex
(high glucosinolates)

Pea root rot
77% control

Stonewall (low glucosinolates)

No control

Published Results - PNW

Plant
Dwarf Essex
(high glucosinolates)

Sclerotinia

0% germination

Stonewall (low glucosinolates)

56% germination

Nematode Control

Rotation or green manures: Brassicas reduced lesion nematodes in strawberry, rootknot in potato, and controlled dagger nematodes in orchards.

Plant parasitic Nematodes

Lesion: Pratylenchus spp.

Root-Knot: Meloidogyne hapla

Dagger: Xiphinema spp.

Difficult and expensive to control

Nematodes per pot (roots and soil) - CT

Crop	<u>Lesion</u>	<u>RKN</u>	<u>Dagger</u>
Tomato	-	23065 a	-
Rye	1110 a	_	-
Sudangrass	190 b	0 b	221 a
Pearl millet 101	132 b	0 b	105 b
Dwarf Essex rapesed	ed 198 b	5185 ab	49 b

Effect of Crops on *Pratylenchus*CT Microplots – Potato Early Dying

Year 1:

Grew rotation crops in infested soils

Year 2: Planted potatoes

Crop effect on Pratylenchus, CT Microplots

Crop	<u>Soil</u>	Roots
Potato	24 a	16 bc
Oat	14 ab	44 a
Dwarf Essex rapeseed	5 b	29 b
Pearl Millet 101	8 b	2 c

Crop effect on Pratylenchus, Year 2 -potato

Crop	<u>Tuber Yield</u>	<u>Pratylenchus</u>
Potato	910 a	147 a
Oat	872 a	160 a
Dwarf Essex rapeseed	d 850 a	149 a
Pearl Millet 101	1071 b	45 b

Effect of Crops on *Pratylenchus*, CT Microplots – Strawberry

Crop	Shoots Incorp	orated Removed
Strawberry	269	210
Dwarf Essex ra	peseed 14	536
Pearl Millet 101	1 0	120

Nematode IPM

Nematode-antagonistic crops do not reduce all nematodes (fungi)

Efficacy vs. genera research.

Host vs. biofumigation effects.

Oilseed IPM Research

Identify effective crop cultivars - glucosinolate project.

Integrate crops into production systems – winter cover or summer rotation

Brassica - nematode host

Winter crops of Brassicas may not allow nematode increase, may have increased yields, and may be valuable winter covers. Research is under way.

